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1. Introduction

The Bethe-Salpeter (BS) equation [1], formally defined in the 
Minkowski space, is an efficient tool to study relativistic systems 
in the non-perturbative regime. One of the commonest methods 
to solve the BS equation numerically is to perform an analytic 
continuation to the complex plane, through the Wick rotation [2], 
into the Euclidean space. After this transformation, the equation 
turns to be non-singular as the singularities move from the inte-
gration line (real axis) to the complex plane. This is the widely 
used method of finding the binding energies, especially for the 
two-body BS equation. However, though certain quantities such as 
binding energies and transverse amplitudes exactly coincide with 
those determined by the Minkowski BS equation, the Euclidean BS 
amplitude is not the physical one and does not give direct access 
to most of the dynamical observables. For example, the electro-
magnetic transition form factor, associated with the breakup of a 
two-body bound state, can be computed in Minkowski space in 
the whole kinematical region including the final state interaction 
[3], while this task has not yet been accomplished with Euclidean 
space calculations. For general purposes one needs the Minkowski 
BS amplitude. One successful way of solving the BS equation fully 
in Minkowski space is by looking for the solution in the form of 
the Nakanishi integral representation [4] combined with the light-
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front (LF) projection [5,6]. Another alternative, without relying on 
any ansatz for the solution, is by direct integration of the BS equa-
tion poles and singularities [7], present in the propagators and 
amplitude. Although the direct integration method is practicable, 
it is much more demanding numerically than solving the problem 
in the Euclidean space. Nevertheless, all these methods were suc-
cessfully applied to two-body systems.

The relativistic three-body systems are extremely interesting, 
with widespread worthwhile applications, but also more challeng-
ing. Most of the extensive researchs in the three-body context were 
carried out in the contact interaction framework, which, in spite 
of its simplification, remains to be rather instructive. The zero-
range interaction BS and LF equations for the bound state of three 
scalar particles, by means of the Faddeev decomposition, were de-
rived in Ref. [8]. The LF equation was firstly solved in Ref. [8] and 
its solution was re-analyzed in Ref. [9]. The three-body BS equa-
tion [8] was also recently solved, for the first time, in Euclidean 
space [10]. Although the LF equation is fully defined in Minkowski 
space, it gives access only to the valence component, which is far 
from enough for relativistic calculations. According to Ref. [10], the 
contributions from higher-Fock components are remarkable and 
cannot be neglected, as already anticipated in Ref. [11]. This is 
an important motivation for going beyond the approaches based 
on the valence component of the LF wave function introduced in 
Ref. [8]. In order to obtain observables, considering the many-body 
components beyond the valence consistently is critical to solve the 
four-dimensional equation fully in Minkowski space. Thereby the 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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aim of the present work is to solve the bosonic three-body BS 
equation [8] directly in the Minkowski space, without relying on 
any ansatz or three-dimensional reduction. Finding the solution 
of three-body equation in the form of the Nakanishi integral rep-
resentation is a work in progress. Extending the “arsenal” of the 
methods is useful for comprehending the BS equation in more re-
alistic cases and this is a first step dealing with the three-body 
equation in Minkowski space.

The rest of this paper is organized as follows. In Sec. 2, we 
transform the BS equation to a partially non-singular form. The 
expressions for the transverse amplitudes are derived in Sec. 3. 
Sec. 4 presents the numerical results for the binding energies, BS 
amplitudes and transverse amplitudes. Finally, in Sec. 5 we draw 
our conclusions.

2. Bethe-Salpeter equation

We consider the system of three scalar bosons with equal con-
stituent masses m with zero-range interaction. The Faddeev com-
ponent of the vertex function v(q, p) complies with a single inte-
gral equation given in Ref. [8]

v(q, p) = 2i F (M12)

∫
d4k

(2π)4

i

[k2 − m2 + iε]
× i

[(p − q − k)2 − m2 + iε] v(k, p). (1)

Due to the two-body zero-range interaction the vertex function 
v(q, p) depends only on the total four momentum p and the four 
momentum of the spectator particle q. Furthermore, F (M12) de-
notes the two-body scattering amplitude namely the zero-range 
interaction kernel, and it reads

F(M12) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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16πma
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1
1

8π2 y′ arctan y′ − 1
16πma

; 0 ≤ M2
12 ≤ 4m2,

1
y′′

16π2 log 1+y′′
1−y′′ − 1

16πma − i y′′
16π

; M2
12 ≥ 4m2,

(2)

with

y =
√

−M2
12√

4m2 − M2
12

, y′ = M12√
4m2 − M2

12

, y′′ =
√

M2
12 − 4m2

M12
.

(3)

The squared effective mass of the two-body subsystem (not includ-
ing the spectator) takes the form M2

12 = (p −q)2 and a denotes the 
scattering length, which is the renormalization parameter used to 
regularize the bubble diagram.

The Eq. (1) constitutes a singular integral equation and must 
be rewritten in a non-singular form before it can be solved nu-
merically. As mentioned, for this aim, in Ref. [10] we transformed 
Eq. (1) into the Euclidean space. In the Minkowski space, the 
strongest singularities (the pole singularities) are present in the 
propagators. For their treatment, in this paper we use the direct 
method introduced in Ref. [7]. The first step is to represent the 
propagator [k2 − m2 + iε]−1 as follows

1

k2 − m2 + iε
= 1

k2 − k2 − m2 + iε
0 v
= P V
1

k2
0 − ε2

k

− iπ

2εk
[δ(k0 − εk) + δ(k0 + εk)], (4)

where εk =
√

k2
v + m2 and kv = |�k|. Then we eliminate the singu-

larities of the integrands in the form of P V
∫

. . .
dk0

k2
0−ε2

k
, exploiting 

the following identities

P V

0∫
−∞

dk0

k2
0 − ε2

k

= P V

∞∫
0

dk0

k2
0 − ε2

k

= 0, (5)

with appropriate coefficients, to subtract the kernel at the singular 
point. After subtracting, the PV (principal value) integrals become 
smooth and the symbol PV is dropped out.

As for the second propagator in (1), we integrate it, in the 
c.m.-frame, i.e. �p = 0, over z = cos

( �k·�q
kv qv

)
(and multiply by 2π

from the azimuthal angle integration). The result reads:

�(q0,qv ,k0,kv) =
∫

idzdϕ

[(p − q − k)2 − m2 + iε]
= iπ

qvkv

{
log

∣∣∣∣ (η + 1)

(η − 1)

∣∣∣∣ − iπ I(η)

}
, (6)

with

I(η) =
{

1 if | η | ≤ 1
0 if | η | > 1

, (7)

and

η = (M3 − q0 − k0)
2 − k2

v − q2
v − m2

2qvkv
. (8)

The log-singularity in (6) can be then integrated by standard nu-
merical methods.

After these transformations, the equation (1) for the Faddeev 
component of the three-body vertex function in the rest frame ob-
tains the following form

v(q0,qv) = F(M12)

(2π)4

∞∫
0

k2
vdkv

{
2π i

2εk

[
�(q0,qv;εk,kv)v(εk,kv)

+ �(q0,qv;−εk,kv)v(−εk,kv)
]

− 2

0∫
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dk0

[
�(q0,qv ;k0,kv )v(k0,kv ) − �(q0,qv ;−εk,kv )v(−εk,kv )

k2
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k

]

− 2

∞∫
0

dk0

[
�(q0,qv ;k0,kv )v(k0,kv ) − �(q0,qv ;εk,kv )v(εk,kv )

k2
0 − ε2

k

]}
.

(9)

The integrand here, in contrast to the integrand of (1), is not singu-
lar anymore at k0 = ±εk . Instead, the kernel �, defined in Eq. (6), 
has logarithmic singularities at η = ±1. For fixed values of q0, qv

and kv , the singular points for �(q0, qv , k0, kv) v.s. k0 are

k0 = (M3 − q0) +
√

m2 + (kv ± qv)2,

k0 = (M3 − q0) −
√

m2 + (kv ± qv)2. (10)

Similarly, the singular points of the kernel �(q0, qv , ±εk, kv)

v.s. kv are given by

kv =
±

√
M2

12(M2
12 + q2

v)(M2
12 − 4m2) ± qv M2

12

2M2
, (11)
12
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where M2
12 = (M3 − q0)

2 − q2
v . The expression under the square 

root is non-negative if

M2
12 ≥ 4m2 or M2

12 ≤ 0.

Consequently, real singular points kv exist if

q0 < M3 −
√

q2
v + 4m2 or M3 − qv < q0 < M3 + qv or

q0 > M3 +
√

q2
v + 4m2. (12)

The transition points in the variable q0 between two regimes (with 
and without singularities v.s. kv ) are thus

q(1)
0 =M3 −

√
q2

v + 4m2,

q(2)
0 =M3 − qv ,

q(3)
0 =M3 + qv ,

q(4)
0 =M3 +

√
q2

v + 4m2,

(13)

with q(1)
0 < q(2)

0 < q(3)
0 < q(4)

0 , and they coincide with the transi-
tion points of the two-body amplitude F (M12), see Eq. (2). These 
inequalities define five intervals of the variable q0: between and 
outside these points. Knowing these intervals is extremely useful, 
as it allows to perform a much cleverer treatment of the weakly 
logarithmic singularities numerically.

3. Transverse amplitudes

The Minkowski vertex function v(q0, qv) cannot be directly 
compared with the corresponding Euclidean one. However, in 
the BS amplitude, one can instead of k = (k0, kv) introduce the 
light-front variables k = (k−, k+, �k⊥), where k∓ = k0 ∓ kz and 
�k⊥ = (kx, ky). The transverse amplitudes – double integrals of the 
Minkowski BS amplitude over k+ and k− , and of the correspond-
ing Euclidean amplitude over k0, kz , – are then the same (up to a 
Jacobian). Below we will calculate the transverse amplitudes using 
the Minkowski BS amplitude, so we can compare the solution of 
this paper with the one found previously through the BS equation 
solved in Euclidean space [10]. In this section we will perform the 
integrations over k+ and k− .

The BS amplitude can be written in terms of the three vertex 
components as

i	M(k1,k2,k3; p)

= i3 v M(k1) + v M(k2) + v M(k3)

(k2
1 − m2 + iε)(k2

2 − m2 + iε)(k2
3 − m2 + iε)

, (14)

where the four-momenta obeys the relation

k1 + k2 + k3 = p. (15)

We subsequently define the transverse amplitude as the inte-
gral

L(�k1⊥, �k2⊥) = L1(�k1⊥, �k2⊥) + L2(�k1⊥, �k2⊥) + L3(�k1⊥, �k2⊥) =
∞∫

−∞
dk10

∞∫
−∞

dk1z

∞∫
−∞

dk20

∞∫
−∞

dk2z i	M(k10,k1z,k20,k2z; �k1⊥, �k2⊥).

(16)

As for the equal masses case, we can deal with one of the com-
ponents, which is given by
L1(�k1⊥, �k2⊥)

= i

∞∫
−∞

dk10

∞∫
−∞

dk1z
v M(k10,k1v)

k2
1 − m2

1 + iε
χ(k10,k1z,k20,k2z), (17)

where

χ(k10,k1z,k20,k2z) = i2
∫

d2k2

(k2
2 − m2

2 + iε)[(p′ − k2)2 − m2
3 + iε] .

(18)

In Eq. (18) we have used

ki = (ki0,kiz), d2ki = dki0dkiz (i = 1,2), (19)

m2
2 = m2 + �k2

2⊥, m2
3 = m2 + (�p⊥ − �k1⊥ − �k2⊥)2, (20)

and the 2-dimensional vector p′ = (p′
0, p

′
z) = p − k1 = (p0 −

k10, pz − k1z).
The integral (18) can be computed analytically and for the re-

gion p′ 2 < (m2 + m3)
2 is given by

χ(k10,k1z; �k1⊥, �k2⊥) = − iπ

p′ 2(u− − u+)
[log(1 − u−) − log(−u−)

− log(−1 + u+) + log(u+)], (21)

where

u∓ = 1

2p′ 2

[
p′ 2 − m2

2 − m2
3

∓
√

((m2 − m3)2 − p′ 2)((m2 + m3)2 − p′ 2)

]
. (22)

Similarly, for p′ 2 > (m2 + m3)
2, we obtain

χ(k10,k1z; �k1⊥, �k2⊥) = χ ′(k10,k1z; �k1⊥, �k2⊥)

+ χ ′′(k10,k1z; �k1⊥, �k2⊥), (23)

with

χ ′(k10,k1z; �k1⊥, �k2⊥)

= iπ
log
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and

χ ′′(k10,k1z; �k1⊥, �k2⊥)

= 2π2√[p′ 2 − (m2 − m3)2][p′ 2 − (m2 + m3)2] . (25)

The component of the transverse amplitude, L1(�k1⊥, �k2⊥), can 
subsequently be written in the form

L1(�k1⊥, �k2⊥) =

− i

∞∫
−∞
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{
iπ

2k̃10

[
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−
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k2
10 − k̃2

10
0



E. Ydrefors et al. / Physics Letters B 791 (2019) 276–280 279
Table 1
Eigenvalues of the three-body ground state for three scattering 
lengths, a, computed by using the Euclidean three-body binding 
energies B3 as inputs.

B3/m am λ

0.006 −1.280 0.999 − 0.054i
0.395 −1.500 1.000 + 0.002i
1.001 −1.705 0.997 + 0.106i

−
∞∫

0

dk10
χ(k10,k1z; �k1⊥, �k2⊥)vM (k10,k1v ) − χ(k̃10,k1z; �k1⊥, �k2⊥)vM (k̃10,k1v )

k2
10 − k̃2

10

}
,

(26)

where

k̃10 =
√

k2
1z + �k2

1⊥ + m2. (27)

Analogously to the treatment of the BS equation, we have here 
used subtractions to eliminate the propagator singularities at k0 =
±k̃10.

4. Results

We multiply the r.h.-side of Eq. (9) by a factor λ and solve 
this eigenvalue equation by a spline decomposition of the vertex 
function v(p, q). As inputs we use the scattering length a and 
the three-body binding energy B3, computed by solving the cor-
responding problem in Euclidean space [10]. The Minkowski and 
Euclidean space calculations are then consistent, as it should be, if 
the eigenvalue λ = 1.0 is found.

In Table 1 we show the calculated eigenvalues for three dif-
ferent values of the three-body binding energy, i.e. B3/m =
0.006, 0.395, 1.001. The corresponding values of the scattering 
length are also listed. It is seen that λ acquire a non-zero imag-
inary part, whereas in all cases the real part of λ is very close 
to unity. For the binding energy B3/m = 0.395, the imaginary 
part is very small (less than 0.2%). However, for the two other 
cases the calculation errors result in the imaginary parts about 5%
and 10% respectively. It is important to mention that in the Eu-
clidean calculations of Ref. [10] the full infinite domains of the 
variables qv and q4 (and also kv and k4) were considered by us-
ing a mapping procedure. However, due to the many singularities, 
this is difficult to do in the Minkowski space calculations keep-
ing the same numerical precision, as sizable numbers of basis 
functions and gauss points are already needed for achieving the 
aforementioned results. Therefore, following the amplitude decay, 
we truncated the range of qv by qmax

v /m = 6.0. Similarly, for the 
binding energies B3/m = 0.006 and 0.395 we used qmax

0 /m = 13.0, 
whereas qmax

0 /m = 15.0 for the case B3/m = 1.001. In this respect, 
the calculations are not completely comparable with each other 
and it partially explains the small non-zero imaginary parts. Nat-
urally, the numerical error is another cause of the imaginary part 
rise, as well as to the real part not being not exactly one.

Moreover, in Fig. 1 we display the computed vertex function 
v(q0, qv = 0.5m) for the binding energy B3/m = 0.395. In the 
figure we also show the analytical positions of the peaks given 
by Eq. (13) (vertical dashed-red lines), which are matching with 
the numerical results. These peaks appear in the transition points 
of the kernel �(q0, qv , ±εk, kv), given by Eqs. (13) in Sec. 2. As 
mentioned in Sec. 2, the aforementioned positions correspond to 
M2

12 = 0 and M2
12 = 4m2, i.e. to the transition points of the two-

body scattering amplitude F (M12).
In Fig. 2 is shown the modulus of the component L1(k1⊥, k2⊥ =

0) of the transverse amplitude for B3/m = 0.395, computed from 
Eq. (26). We also show, for comparison, the corresponding result 
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1. The vertex function, v(q0, qv = 0.5m) with respect to q0 for the input param-
 am = −1.5 and B3/m = 0.395. The analytical positions of the peaks, given in 
13), are shown with dashed-red lines.

2. Transverse amplitude component, |L1(k1⊥, k2⊥ = 0)|, obtained in Minkowski 
e compared with the one computed in Euclidean space [10], for the parameters 
−1.5 and B3/m = 0.395.

using the solution in Euclidean space. It is seen that the re-
s are in good agreement with each other. As is clearly visible 
ig. 1, the vertex v(q0, qv) v.s. q0 is a non-smooth function. De-
e of this, the obtained transverse amplitude v.s. k⊥ is smooth, 
ch makes the coincidence even more remarkable.

onclusions

We have solved, for the first time, directly in Minkowski space, 
 three-body BS equation derived in Ref. [8] for scalar con-

ents interacting by the two-body contact interaction. Previ-
ly, this equation was solved either using LF projection [8,9], 
ch attains only the valence component, and, recently, in Eu-
ean space [10], which does not give the physical amplitude. The 
kowski BS amplitude is the physical one, which gives direct ac-
 to any observable. One needs it to calculate, in particular, the 
ribution functions of partons in their various forms, and also 
tromagnetic form factors for any momentum transfer. In the 
elike domain any observable requires the Minkowski space so-
on.
In our method, we reproduced the binding energies found in 
. [8–10] and also the transverse amplitude found via Euclidean 
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space calculation [10]. This confirms the validity of our approach 
and correctness of our results. This also brings hope that solving 
the three-body BS equation in Minkowski space could be general-
ized to more realistic interactions and more complex systems, e.g. 
with unequal masses or involving fermions. It is worth to men-
tion that dealing with singular structures numerically can make 
this method hard to extend for more sophisticated systems. For 
this reason, we are working on the solution of the three-body 
equation by means of the Nakanishi integral representation and 
the LF projection. This latter method was already successfully used 
for solving the two-body BS equation, even including spin degrees 
of freedom, with relatively good numerical stability. Its greatest 
advantage is the transformation of the initial BS equation into a 
non-singular integral equation to be solved numerically. This is a 
work in progress and it is planned for a forthcoming publication.

Acknowledgements

We are grateful to Jaume Carbonell for stimulating discussions.
This study was financed in part by Conselho Nacional de 

Desenvolvimento Científico e Tecnológico - Brasil (CNPq), grant 
#308486/2015-3 and by Coordenação de Aperfeiçoamento de Pes-
soal de Nível Superior - Brasil (CAPES) - Finance code 001.

J.H.A.N. acknowledges the support of Fundação de Amparo à 
Pesquisa do Estado de São Paulo (FAPESP), grants #2014/19094-8 
and #2017/14695-1.
V.A.K. acknowledges the FAPESP grant #2015/22701-6.
E.Y. thanks for the financial support of the FAPESP grant 

#2016/25143-7.
We thank the FAPESP Thematic Projects grants #13/26258-4 

and #17/05660-0.
V.A.K. is also sincerely grateful to group of theoretical nuclear 

physics of ITA, São José dos Campos, Brazil, for kind hospitality 
during his visit.

References

[1] E.E. Salpeter, H.A. Bethe, Phys. Rev. 84 (1951) 1232.
[2] G.C. Wick, Phys. Rev. 96 (1954) 1124.
[3] J. Carbonell, V.A. Karmanov, Phys. Rev. D 91 (2015) 076010.
[4] K. Kusaka, A.G. Williams, Phys. Rev. D 51 (1995) 7026;

K. Kusaka, K. Simpson, A.G. Williams, Phys. Rev. D 56 (1997) 5071.
[5] V.A. Karmanov, J. Carbonell, Eur. Phys. J. A 27 (2006) 1.
[6] T. Frederico, G. Salmè, M. Viviani, Phys. Rev. D 89 (2014) 016010.
[7] J. Carbonell, V.A. Karmanov, Phys. Rev. D 90 (2014) 056002.
[8] T. Frederico, Phys. Lett. B 282 (1992) 409.
[9] J. Carbonell, V.A. Karmanov, Phys. Rev. C 67 (2003) 037001.

[10] E. Ydrefors, J.H. Alvarenga Nogueira, V. Gigante, T. Frederico, V.A. Karmanov, 
Phys. Lett. B 770 (2017) 131.

[11] V.A. Karmanov, P. Maris, Few-Body Syst. 46 (2009) 95.

http://refhub.elsevier.com/S0370-2693(19)30152-2/bib4253s1
http://refhub.elsevier.com/S0370-2693(19)30152-2/bib575F3534s1
http://refhub.elsevier.com/S0370-2693(19)30152-2/bib436172626F6E656C6C3A32303135617761s1
http://refhub.elsevier.com/S0370-2693(19)30152-2/bib4B57s1
http://refhub.elsevier.com/S0370-2693(19)30152-2/bib4B57s2
http://refhub.elsevier.com/S0370-2693(19)30152-2/bib627331s1
http://refhub.elsevier.com/S0370-2693(19)30152-2/bib4672655052443134s1
http://refhub.elsevier.com/S0370-2693(19)30152-2/bib636B3262s1
http://refhub.elsevier.com/S0370-2693(19)30152-2/bib746F6269617331s1
http://refhub.elsevier.com/S0370-2693(19)30152-2/bib636B3362s1
http://refhub.elsevier.com/S0370-2693(19)30152-2/bib65793362s1
http://refhub.elsevier.com/S0370-2693(19)30152-2/bib65793362s1
http://refhub.elsevier.com/S0370-2693(19)30152-2/bib4B61726D616E6F763A323030386278s1

	Solving the three-body bound-state Bethe-Salpeter equation in Minkowski space
	1 Introduction
	2 Bethe-Salpeter equation
	3 Transverse amplitudes
	4 Results
	5 Conclusions
	Acknowledgements
	References


