This paper investigates the problem of robust tracking control for quasilinear reaction–diffusion partial differential equations subject to external unknown perturbations. The considered class of equations is quite general, and includes classical equations such as the heat equation or the Fisher–KPP equation as special cases. Global practical stabilization of the tracking error system is established under mild conditions on the disturbance term using a regularized infinite-dimensional sliding-mode controller. Extensive simulations support and validate the theoretical results.

Robust distributed control of quasilinear reaction–diffusion equations via infinite-dimensional sliding modes / Cristofaro, A.. - In: AUTOMATICA. - ISSN 0005-1098. - 104:(2019), pp. 165-172. [10.1016/j.automatica.2019.02.039]

Robust distributed control of quasilinear reaction–diffusion equations via infinite-dimensional sliding modes

Cristofaro A.
2019

Abstract

This paper investigates the problem of robust tracking control for quasilinear reaction–diffusion partial differential equations subject to external unknown perturbations. The considered class of equations is quite general, and includes classical equations such as the heat equation or the Fisher–KPP equation as special cases. Global practical stabilization of the tracking error system is established under mild conditions on the disturbance term using a regularized infinite-dimensional sliding-mode controller. Extensive simulations support and validate the theoretical results.
2019
Distributed-parameter systems; Reaction–diffusion equations; Sliding-mode control
01 Pubblicazione su rivista::01a Articolo in rivista
Robust distributed control of quasilinear reaction–diffusion equations via infinite-dimensional sliding modes / Cristofaro, A.. - In: AUTOMATICA. - ISSN 0005-1098. - 104:(2019), pp. 165-172. [10.1016/j.automatica.2019.02.039]
File allegati a questo prodotto
File Dimensione Formato  
Cristofaro_Robust-distributed_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.5 MB
Formato Adobe PDF
1.5 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1341508
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact