Lyapunov stability of the parabolic p-Laplace equation is investigated. The nominal equation is shown to be asymptotically stable, while the stronger property of exponential stability is guaranteed by the presence of lower-order terms satisfying a suitable growth condition. Numerical simulations are provided to support and illustrate the theoretical results.
Lyapunov Stability Results for the Parabolic p-Laplace Equation / Cristofaro, A.; Giambo, R.; Giannoni, F.. - (2018), pp. 3001-3006. (Intervento presentato al convegno 16th European Control Conference, ECC 2018 tenutosi a Limassol; Cyprus) [10.23919/ECC.2018.8550122].
Lyapunov Stability Results for the Parabolic p-Laplace Equation
Cristofaro A.
;
2018
Abstract
Lyapunov stability of the parabolic p-Laplace equation is investigated. The nominal equation is shown to be asymptotically stable, while the stronger property of exponential stability is guaranteed by the presence of lower-order terms satisfying a suitable growth condition. Numerical simulations are provided to support and illustrate the theoretical results.File | Dimensione | Formato | |
---|---|---|---|
Cristofaro_Lyapunov-stability_2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.87 MB
Formato
Adobe PDF
|
1.87 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.