This paper is concerned with the optimal control of the parabolic p-Laplace equation with lower order reaction terms. The autonomous equation is shown to be exponentially stable with respect to the square integral norm. On the basis of this result, the task of reference tracking using a distributed control input is investigated and, in particular, the optimal control problem associated to the minimization of a power functional is addressed.

Distributed optimal control of degenerate reaction-diffusion equations / Aquilanti, L.; Cristofaro, A.. - (2019), pp. 1938-1943. ((Intervento presentato al convegno 18th European Control Conference, ECC 2019 tenutosi a Napoli; Italy [10.23919/ECC.2019.8796084].

Distributed optimal control of degenerate reaction-diffusion equations

Aquilanti L.
;
Cristofaro A.
2019

Abstract

This paper is concerned with the optimal control of the parabolic p-Laplace equation with lower order reaction terms. The autonomous equation is shown to be exponentially stable with respect to the square integral norm. On the basis of this result, the task of reference tracking using a distributed control input is investigated and, in particular, the optimal control problem associated to the minimization of a power functional is addressed.
18th European Control Conference, ECC 2019
Optimal control; reaction-diffusion equations; nonlinear systems
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Distributed optimal control of degenerate reaction-diffusion equations / Aquilanti, L.; Cristofaro, A.. - (2019), pp. 1938-1943. ((Intervento presentato al convegno 18th European Control Conference, ECC 2019 tenutosi a Napoli; Italy [10.23919/ECC.2019.8796084].
File allegati a questo prodotto
File Dimensione Formato  
Aquilanti_Distributed-optimal_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 451.51 kB
Formato Adobe PDF
451.51 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1341489
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact