We propose a recursive partitioning approach to identify groups of risky financial institutions using a synthetic indicator built on the information arising from a sample of pooled systemic risk measures. The composition and amplitude of the risky groups change over time, emphasizing the periods of high systemic risk stress. We also calculate the probability that a financial institution can change risk group over the next month and show that a firm belonging to the lowest or highest risk group has in general a high probability to remain in that group.

Atheoretical Regression Trees for classifying risky financial institutions / Cappelli, C.; Di Iorio, F.; Maddaloni, A.; D'Urso, P.. - In: ANNALS OF OPERATIONS RESEARCH. - ISSN 0254-5330. - (2019). [10.1007/s10479-019-03406-9]

Atheoretical Regression Trees for classifying risky financial institutions

Di Iorio F.;D'Urso P.
2019

Abstract

We propose a recursive partitioning approach to identify groups of risky financial institutions using a synthetic indicator built on the information arising from a sample of pooled systemic risk measures. The composition and amplitude of the risky groups change over time, emphasizing the periods of high systemic risk stress. We also calculate the probability that a financial institution can change risk group over the next month and show that a firm belonging to the lowest or highest risk group has in general a high probability to remain in that group.
2019
Atheoretical Regression Trees; Factor analysis; Financial stress; Systemic risk
01 Pubblicazione su rivista::01a Articolo in rivista
Atheoretical Regression Trees for classifying risky financial institutions / Cappelli, C.; Di Iorio, F.; Maddaloni, A.; D'Urso, P.. - In: ANNALS OF OPERATIONS RESEARCH. - ISSN 0254-5330. - (2019). [10.1007/s10479-019-03406-9]
File allegati a questo prodotto
File Dimensione Formato  
Annals Operation Research (Cappelli et al, 2019).pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1336406
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact