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Abstract
We propose a recursive partitioning approach to identify groups of risky financial institu-
tions using a synthetic indicator built on the information arising from a sample of pooled
systemic risk measures. The composition and amplitude of the risky groups change over
time, emphasizing the periods of high systemic risk stress. We also calculate the probability
that a financial institution can change risk group over the next month and show that a firm
belonging to the lowest or highest risk group has in general a high probability to remain in
that group.
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1 Introduction

The recent great financial crisis has brought to the center stage the issue of evaluating the
systemic risk of the financial system, possibly using techniques that would allow to identify
pockets of accumulation of risk.

Individual financial institutions use several approaches to measure and manage their risk.
Some of these approaches have been enshrined in prudential regulations, and therefore are
commonly used by supervisors and financial institutions alike. The Value-at-Risk (VaR), for
example, is the most widely-used risk measure by financial institutions, and it has been used
by regulators and policy makers to determine “capital levels that need to be set aside by
financial firms against market risks”. However the VaR, and generally all measures aimed at
evaluating the risk of a financial entity in isolation, falls short in capturing the overall risk
accumulating in the system.

Many different approaches to address this issue have been proposed in recent years and
several alternative indicators of risk measures are used by policy institutions and researchers.
A comprehensive survey of the empirical literature on systemic risk measurement can be find
for example in ECB (2009), ECB (2010) and ECB (2011). A widely known risk indicator
is for example the Conditional Value-at-Risk (CoVaR), defined as the VaR of institution
i conditional on institution j being in financial distress, where institution j is at its VaR.
This measure has also been refined by using the �CoVaR (Adrian and Brunnermeier 2016).
A number of largely known indicators are based on market capitalization values, like the
systemic risk measure (SRisk) that captures the expected capital shortage of a firm given its
degree of leverage and the Marginal Expected Shortfall (MES), see Brownlees and Engle
(2017). Other indicators are the MES of a financial firm, introduced by Acharya et al. (2017)
as the average return of each firm during the 5% worst days for the market, and the so-called
“CAPM beta times market capitalization” (Benoit et al. 2013). Other measures draw from
balance sheets items, like the Leverage Ratio (Fostel and Geanakoplos 2008; Geanakoplos
and Pedersen 2012).

All these measures have drawbacks which of course may limit their performance and
reliability. The main issue is choosing a threshold over which the risk of financial institu-
tions is considered worrisome. A simple approach is to rank the institutions according to
the considered risk indicators, for example focussing on the top 10 riskier financial firms,
i.e. those showing the highest (worst) values of the indicators [see for example Acharya
et al. (2012)].This method is undoubtedly easy to implement and allows a quick comparisons
across different risk indicators and thus it is particularly useful for practitioners that routinely
analyze systemic risk index time series. However it doesn’t take into account the concentra-
tion of risk in the system and the relative riskiness of financial institutions. For example, in
terms of value of the indicator, the 20th firm may be equally risky than the first, or the risk
gap between the first and the third could instead be significant. Second, typically different
indicators produce different rankings and it is difficult to choose a priori one over the others.
Therefore, researchers and policymakers alike have been drawn to ask the following question:
is there a way to summarize the different information arising from the indicators and obtain
an effective and quick judgment on the riskiness of financial firms? Several authors have pro-
posed different approaches based on the principal component analysis (PCA), e.g. Billio et al.
(2012) and Rodríguez-Moreno and Peña (2013). In more recent contributions, Giglio et al.
(2016), use conditional quantile factor model to obtain systemic risk indices. The work more
closely related to ours isNucera et al. (2016). They apply the factor analysis across rankings in
the cross-section dimension, at each point in time, to form optimal combinations of rankings.
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We contribute to this literature by proposing a novel approach based on a combination of
factor analysis and a binary recursive partitioning approach known asAtheoretical Regression
Trees (ART for short) originally proposed by Cappelli and Reale (2005) to detect multiple
change points in time series as in Cappelli et al. (2008) and Rea et al. (2010) and then
successfully extended to fuzzy time ordered units and to interval value time series (Cappelli
et al. 2013, 2015).

Several risk measures are summarized using PCA and then the ART procedure is applied
to the ordered principal component scores. In this way, a partition of the synthetic index and,
accordingly, a classification of financial firms into homogeneous risk groups are defined.
This approach has the advantage of clearly identifying, at each point in time, the riskiest
institutions, independently of their rankings. The number of financial institutions belonging
to each group provides also a clear indication of where the risk are mounting in the system.
In particular, we find that the amplitude of the groups changes over time and identify periods
of high systemic risk, when a larger number of institutions belong to the riskiest group. This
further support our claim that policy makers and supervisor should not restrict their attention
to a predefined number of financial institutions.

Next, we analyze the probability of transition from one group to another. We generally
find that the lowest and the highest risk group are like “absorbing states”. Once an institution
is part of one of these groups, it is very likely that it will remain in that group. This has a
number of implications for supervisors and for financial stability policy makers. It may guide
them to choose on which institutions focus their monitoring efforts.

The paper is structured as follows. In Sect. 2 we provide the necessary background on
regression tree methodology and ART. Section 3 outlines the proposed approach to classify
financial institutions based on the composite risk indicator. Section 4 illustrates the risk
measures and the data used in the analysis. Section 5 reports and discusses the results. Some
concluding remarks follow in Sect. 6.

2 Background

This section provides some details on both regression tree methodology and the ART proce-
dure which is based on Least Square Regression Trees (LSRT for short).

LSRT express the relationship between a response variable and a set of covariates in the
form of a binary tree in which every node i.e. a group of observations, is split into two
subgroups, the left and the right child nodes (subsets of observations), respectively. LSRT
can be seen as piecewise constant regression models as they partition the covariate space
into regions (the tree nodes) and fit a constant value within each region that is the mean of
response values in the given node.

The top-down partitioning algorithm employs a splitting criterion to choose at each tree
node the best split, i.e. the binary division, of the current node.

Specifically, given a numerical response variable Y and a set of covariates (X1, X2, . . . ,

X p) observed on a sample of N units, the binary tree arises by recursively splitting the
training set (yi , xi1, . . . , xi j , . . . , xip)Ni=1, into two subsets seeking at any internal node h
for the split s that breaks the nodes into two mutually exclusive subsets as homogeneous as
possible with respect to the given response variable (for details and a review on tree based
methods see Breiman et al. (1984) and Loh (2011) respectively). Thus, the best split provides
the highest reduction in deviance
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Fig. 1 Example of a split in a binary regression tree

�SS(h, t) = SS(h) − [SS(hl) + SS(hr )] (1)

where SS(h) = ∑
yi∈h(yi − μ̂(h)) is the sum of squares for node h, and SS(hl) and SS(hr )

are the sums of squares for the left and right descendants, respectively; an example of a split
in a regression tree is displayed in Fig. 1.

As hl and hr are an exhaustive partition of h, SS(h) represents the total sum of squares
T SSy(h) and SS(hl) + SS(hr ) the within-group sum of squares WSSy|s(h). Therefore the
splitting criterion (1) is equivalent tomaximize the between-groups sumof squares BSSy|s(h)

that can be written as:

BSSy|s(h) = N (hl)N (hr )

N (h)2
(μ̂(hl) − μ̂(hr ))

2 (2)

where N (h) denotes the number of Y ′ values in node h and N (hl) and N (hr ) the cor-
responding subsets that go to left and right child nodes, respectively. Thus, in LSRT the
splitting criterion searches for the child nodes that are as far away as possible, i.e., the two
subgroups of Y ’s values for which the squared distance between the corresponding means
is maximum. Once a node is partitioned, the splitting process is recursively applied to each
child node until either they reach a minimum size or no reduction of the node deviance can
be achieved.

Minimizing the within-group sum of squares (or, equivalently, maximizing the between
group sum of squares) is a natural clustering criterion for grouping a single real variable
(Everitt et al. 2001). This is the case of the Fisher’s algorithm of exact optimization (Fisher
1958) that introduces the notion of contiguous partitions. Let i, i ′ and i ′′ be three data points
having assigned a numerical measure such that Yi < Y ′

i < Yi ′′ ; according to Fisher a partition
is said to be contiguous if it consists of groups that satisfy the following condition: if i and
i ′ are assigned to the same class then i ′′ must be also assigned to that class.

Fisher demonstrates that least square partitions are contiguous and he provides a dynamic
programming approach that allows to find the exact optimal partition intoG groups drastically
reducing the number of computations.

ART exploits the concept of contiguous partitions within the framework of LSRT
using as a single covariate an arbitrary sequence of completely ordered numbers K =
1, 2, . . . , i, . . . , N . Tree-regressing the response variable Y on this artificial covariate resorts
to create and check at any node h all possible binary contiguous partitions of the Yi ∈ h.
These splits are the only ones that need to be checked to detect the binary partition that min-
imizes the sum of squares and, indeed, they are generated by using K as covariate. In other
words, for the contiguity property the best split lays in K (or in its subintervals after the split
of the root note has taken place) and the tree algorithm, based on the splitting criterion in the
(1), is forced to identify it. In general, the use of K as covariate enables ART to generate G
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contiguous groups such that the mean of each group satisfies μ̂g �= μ̂g+1 with g = 1, . . . ,G
and

∑
g Ng = N .

It’sworth noting that, withinART, the target variableY is partitioned preserving its internal
sorting; for example, if the target variable is a time series, the partition will consist of groups
of observations that retain the temporal ordering and for this reason the procedure has been
successfully employed to locate multiple changes occurring at unknown dates in various
types of time series (Cappelli and Di Iorio 2010; Cappelli et al. 2013, 2015).

Eventually, note that as K is not a real predictor variable but an artificial covariate and the
procedure is theory-free, it has been called Atheorethical Regression Trees.

3 Proposed approach for classification of financial risky institutions

As described in the introduction our aim is to obtain a classification of financial firms into
homogeneous risk groups using a summary measure of risk. Our procedure is composed by
the following three main steps which are repeated for every month in our dataset:

• Step 1: Summarize the systemic risk measures in a single composite index using PCA
• Step 2: Apply the Atheoretical Regression Trees procedure (ART) on the ordered indi-

vidual scores given by the first principal component (PC) to obtain a partition of the
synthetic index into contiguous classes that identifies risk groups.

• Step 3: Apply pruning strategy to the resulting tree to select the optimal partition.

Specifically, we perform the PCA on themonthly correlationmatrix of the original numer-
ical values. In doing so we depart from Nucera et al. (2016). Indeed for each indicator they
turn the observed data into ranks for the selected units and then they perform the PCA on the
resulting transformed data. Our approach has the advantage to avoid loss of information. In
particular preserving the numerical nature of the original variables is useful for the detection
of outliers which are quite common in financial data.

We detect and treat the outliers using the following procedure. First we run PCA on the
whole monthly data set and then we identify as outliers the observations that lay beyond the
95% whiskers of the box-plot of PC scores, on both sides. Then the PCA is performed again
on the restricted sample excluding the outliers. The outliers are treated as supplementary
individuals and their coordinates are computed using the PCA performed on the subset of
active individuals. In this way we obtain the scores for the remaining individuals net of the
outliers effect; at the same time we keep them in the analysis. As an example, in Fig. 2 we
report for November 2015 the effect of 4 evident outliers on the first PC scores. To help the
cross monthly comparison we rescale the PC individual scores in [−1; 1].

The ordered individual scores obtained by the first PC are the realizations of a new contin-
uous variable that can be partitioned into classes of increasing systemic risk using the ART
method.

Thus, since in our application the variable to be partitioned is given by the first principal
component scores sorted in ascending order, ART generates a partition such that μ̂g < μ̂g+1

while the split points identify the thresholds that separates classes of increasing risk. By parti-
tioning the ordered composite systemic risk index by maximum homogeneity, ART provides
a classification of the financial institutions that can be employed for decision purposes, i.e.
to predict the class of risk associated to a new company simply computing its PC score and
then checking to which group (terminal node) it belongs.

It’s worth noting that the recursive partitioning algorithm tends to create a large tree
that overfits the data. In the present context overfitting leads to a partition into an overly
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Fig. 2 Outliers effects on 1st PC scores, November 2015

large number of groups and we need to find a parsimonious subtree whose terminal nodes
correspond to the actual number of distinct subgroups present in the data. This is a major
issue in recursive partitioningmethods. Several solutions have been suggested in the literature
including rules of thumb, informal methods, statistical tests as discussed in Cappelli et al.
(2002). In the present case we have considered the classical pruning method proposed in the
framework of the CART approach (Breiman et al. 1984) that selects the subtree (partition)
that produces the smallest cross validated error.
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4 Data

Weusemonthly observations of the six systemic risk indicators calculated for N = 193 finan-
cial sector European firms.1 Our sample contains commercial banks, private and investment
banks, insurance and asset managers based in Europe. Of these, 23% are UK based, 10%
are in France, Germany and in Italy, and 8% in Switzerland. Commercial banks represent
44% of the sample, around 36% are investment banks, while the remaining 20% is composed
of asset managers, financial providers and the insurances. We restrict the sample period to
January 2010–December 2015 (T = 72 months), in order to obtain a balanced panel and
cover the main European debt crisis period.

Following the work by Nucera et al. (2016) we consider six commonly used measures of
systemic risk. The risk measures: SRisk, Marginal Expected Shortfall (MES), Leverage ratio
(Lvg), and Dollar systematic risk (β × MV) are from the vLab website.2 The �CoVaR,
and Value-at-Risk (VaR) are taken from the confidential Bundesbank submissions to the
European Systemic Risk Board (ESRB).3 As pointed out by Nucera et al. (2016) these risk
measures represent a comprehensive set of market based measures that regulators may take
into account in practice.

The risk measures that we consider are derived following different procedures and they
take into account different dimension of the riskiness of the financial institutions involved.
We provide below a short description of all the measures, we refer to Nucera et al. (2016)
for more details and to the vLab site for technical aspects.

1. SRisk is an estimate of the capital shortfall a given financial firm is expected to experience
conditional on a severe market decline, see Brownlees and Engle (2017), and can be
interpreted as the systemic risk contribution of a given financial firm. SRisk is a function
of a firm’s size, leverage, and its expected equity loss given a market downturn.

2. MES introduced by Acharya et al. (2017) is evaluated in the version proposed by Brown-
lees and Engle (2017) where it is defined as the expected return of a financial firm’s stock
conditional on a market return being in its lower tail. According to this measure the firm’s
systemic risk contribution is function of tail dependence between market returns and a
financial firm’s stock returns, see e.g. Zhou and Tarashev (2013).

3. the Leverage ratio (LVG) is the ratio between the market value of equity and the book
value of debt, over the market value of equity. This is the ’quasi-market value of leverage’
as defined in Engle et al. (2015), and follows the definition on leverage as in Adrian and
Shin (2010).

4. β ×MV is the product of the time-varying beta estimate and the firm’s market capitaliza-
tion. The time-varying β coefficient is estimated following Engle (2015). This measure
gives an estimate of the nominal (absolute) risk of the firm’s market capitalization to
systematic (market) shocks.

5. �CoVaR is defined as theVaR of the financial system, usually approximated by amarket
index, conditional on a certain institution being in distress. �CoVaRi is defined as the
VaR of the financial system when institution i is in distress, minus the VaR of the system
when institution i is at its median value; details on this index can be found in Adrian and
Brunnermeier (2016).

1 We thank Federico Nucera for sharing with us the original dataset on which the paper Nucera et al. (2016) is
based.We restrict our sample to include only EU institutions and we exclude real estate and other non financial
corporation.
2 http://vlab.stern.nyu.edu.
3 http://www.esrb.europa.eu/pub/rd/html/index.en.html.
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Fig. 3 Crédit Agricole: monthly risk measure indicators Jan. 2010–Dec. 2015

6. The value-at-risk (VaR) of an institution is an intermediate output of the calculation of
CoVaR, see Acharya and Steffen (2015).

Table 3 in the Appendix collects the dataset summary statistics.
As an example in Fig. 3 we report the values of six indicators over the sample period

for Crèdit Agricole where it is evident that the index VaR is more volatile than the other
measures.

5 Results

5.1 Identification of risk classes

For each month the original data are collected in a N × 6 matrix on which the PCA is
performed. Specifically, we extract the first PC which explains between 42 and 60% of the
total variance for each period, a result consistent with Nucera et al. (2016). Then the first
PC on average explains at least more then 50% of the information on risk collected by the
6 indicators. In panel A of Fig. 4 it is reported the distribution of the percentage of total
variance explained by the first eigenvalue over the sample with the superimposed Gaussian
distribution (with sample mean and variance) and the usual Jarque–Bera test for normality.

The first principal components that account alone for not less than 40% of the overall
variability are to be considered very meaningful. Panel B shows the variance explained by
the fist eigenvalues over time. It is evident that the percentage of the explained total variance
decreases around the first months of 2013 in correspondence of the Sovereign crisis in the
euro area. While the first PC explain a significant percentage of the total variance, the overall
decrease would support the inclusion of additional PC in the analysis. However there is a
clear trade off between the advantage of using a single indicator for the classification and
comprehensiveness resulting from more then one indicator.

The six systemic risk measures are positively correlated with each other and with the first
principal component but they do not contribute in the same way to PC variance as illustrated
by Table 1 and their contribution varies over time. In particular the table shows that β ×MV
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Fig. 4 Percentage of total variance explained by 1st PC

and MES (which are highly correlated) are—across months and years—the most important
indicators, followed by �CoVaR. The VaR contribution falls starting from 2013.

For each month we implemented the ART algorithm as described in Sect. 2. The ordered
first principal component obtained on the N × 6 data matrix of risk indexes plays the role of
response variable Y which is, then, tree regressed on the artificial covariate k setting 5 as the
minimum for the class size. We found that the optimal partition is into G = 4 groups. We
labeled this groups as low (1), medium-low (2), medium-high (3) and high risk (4). Table 2
displays the summary statistics of the class dimension in total sample and for the sub-period
2010–2012 and 2013–2015. In Fig. 5 the main characteristics of the monthly group sizes are
summarized by a box-plot. Observations outside the 95%—whiskers range are considered
outliers and represented via dots. The high risk class shows a small size with an average
dimension of 24 units. The 50% of the monthly class size belong to [18–30], this implies
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Table 1 Correlation between risk
indicators and 1st PC

Year Beta �CoVaR Lvg MES SRisk VaR

2010 0.95 0.66 0.53 0.95 0.58 0.53

2011 0.96 0.58 0.50 0.95 0.56 0.60

2012 0.96 0.46 0.45 0.96 0.56 0.63

2013 0.95 0.61 0.21 0.95 0.52 0.28

2014 0.96 0.73 0.14 0.96 0.51 0.32

2015 0.94 0.78 0.13 0.94 0.49 0.00

Table 2 Summary statistics of
the risk classes

Class Mean SD Min Max

2010–2015

cl1 41.86 12.19 24 72

cl2 65.69 11.19 41 92

cl3 61.07 14.7 22 83

cl4 24.35 9.57 7 53

2010–2012

cl1 47.69 12.19 26 72

cl2 70.81 10.26 52 92

cl3 54.89 16.88 22 83

cl4 19.58 6.805 7 34

2013–2015

cl1 36.03 9.085 24 66

cl2 60.58 9.746 41 79

cl3 67.25 8.66 43 83

cl4 29.11 9.633 12 53

cl1: low risk; cl2: medium-low risk; cl3: medium-high risk; cl4: high risk ; + indicates
the mean, outliers represented by dots.

Fig. 5 Box plots of monthly risk class sizes, Jan 2010-Dec 2015

123



Annals of Operations Research

Fig. 6 Monthly risk class sizes, Jan 2010–Dec 2015

that the high risk class includes from 9 to 15% of the sample in 50% of time observations.
On the other hand the size of the classes 2 and 3 is significant larger and more volatile. In
the “Appendix” we provide the same information for each year of the sample, see Fig. 9. We
can see that the number of firms belonging to the high risk class became much more volatile
from 2013 onwards.

Figure 6 shows the size of the risk classes over time. In the figure we plot also a centered
6-term moving average of the size class series to underline their general behavior. Panel
A shows that the size of the least risky classes drops significantly around the time of the
Sovereign crisis. At the same time the size of class 3 and 4 increases (Panel B). It is notable
that the size of the riskiest class 4 is larger than 20 on average and reaches more than 40 units
after 2013 in few instances. This supports our claim that considering only the top 10 or top
15 of riskiest financial institution as a measure of the risk of the system maybe misleading.

123



Annals of Operations Research

p11=prob. to remain in the lowest risk class;
p44=prob. to remain in the highest risk class.

Fig. 7 Monthly transition probabilities, 2010–2015

Fig. 8 Monthly transition probabilities, 2010–2015

In the “Appendix” it is provided more detailed information on the behavior of the cut-off
points in between the classes over the time period, see Fig. 10, and the mean and the standard
error of the PC scores for each risk group and month, see Table 4.

When one or more indicators showed a peculiar behavior (extreme values) for some finan-
cial institutions in one or more months, they have been treated as supplementary individuals,
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that is they were not used for the determination of the principal components and their scores
were predicted using the information provided by the performed PCA on the active individ-
uals. Note that the number of these financial institutions is small (from 1 in 2011 to 9 in
2015) and only in few cases they were treated as supplementary individuals for most part of
the year as detailed in Table 5 of the “Appendix”. However, these events, involving a limited
number of institutions, are to be considered as due to the specific financial situation of those
institutions rather than to a general moment of distress in the market as a whole.

5.2 Transition probability

A natural outcome of our analysis is to calculate the probability that a financial institution
moves from a risk class to another one. Following Jones (2005), we estimate the Markov
Transition Matrices as follows. Let ni j be the number of units that were in class i in period
t − 1 and are in class j in period t . The estimated probability of financial institution being in
state j in period t conditional on it been in state i in period t − 1 is given by pi j = ni j∑

j ni j
,

i.e. the units that started in state i and ended in state j as a proportion of sum of units in state
i at time t . In Fig. 7, we report the estimated monthly probabilities p11 and p44, which are
the probabilities to remain in the lowest and in the highest risk class. In Fig. 8 we report the
estimated monthly probabilities p34 and p43, which are the probabilities to go to the higher
risk class starting from class 3, or from class 4 to go down into class 3. Even in these cases we
plot also a centered 6-term moving average of the series to underline their general behavior.
From the first figure we see that p11 and p44 are in general over 0.5. It should keep in mind
that the relative high volatility of the p44 results from the small size of this class.

This analysis could help in choosing the institution to bemonitored. Since the probability to
remain in the lowest risk class is alwaysmore than 50%, supervisor may decide to monitoring
these institutions less frequently. On the other hand financial institution in the highest risk
class should be monitored on continuous basis. In our sample just one financial institution
remains in class 4 for the entire period and 9 firms remain in that class more then 75% of the
time periods. In January 2010, 24 firms are in class 4: in particular 19 are banks; in December
2015, 42 firms, including 23 banks, are in class 4.

6 Conclusions

We have proposed a novel approach to classify financial institutions (banks) into homoge-
neous groups based on a synthetic indicator of risk. This approach provides a flexible way to
identify groups of risky financial institutions. At the same time, it could give policy makers
an easy and intuitive instrument to evaluate periods in which the level of systemic risk is high,
depending on the size of the riskiest group(s). Note that, opposed to our procedure, standard
classification tools such as cluster analysis, do not provide neither a synthetic risk indicator
nor an ordering of the observations and moreover the identified partition into groups could
not be used for prediction purposes i.e. to assign a financial firm to a risk group.

In our application, we also show that riskier financial institutions tend to remain in the
same group with very high probability also over the successive periods, which may provide
very useful indications to supervisors in charge of micro-prudential supervision.
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Appendix

Table 3 collects the descriptive statistics of the risk indicators. Table 4 refers to the mean and
the standard error of the principal component scores for each risk group and month. Figure 9
describes the characteristics of the class size distribution for each year, while the behavior of
the cut-off points over the time period are reported in Fig. 10 (Table 5).

Table 3 Systemic risk indicators descriptive statistics

Stat Beta Dcov LVG MES SRisk VaR

2010

Min 0.12 0.01 1.02 0.31 − 14,992.00 10.20

Max 3.59 0.71 403.66 8.79 130,245.00 589.30

Mean 1.03 0.43 17.05 2.83 6532.82 37.76

SD 0.43 0.13 27.10 1.18 19,857.82 25.51

2011

Min − 0.02 − 0.01 1.02 − 0.08 − 17,323.00 10.00

Max 3.40 0.73 9280.12 11.87 154,897.00 342.80

Mean 1.10 0.43 31.39 3.18 7263.95 43.11

SD 0.49 0.13 290.17 1.44 21,475.12 25.95

2012

Min 0.10 0.04 1.01 0.25 − 17,151.00 9.80

Max 6.70 0.74 2974.42 17.89 152,556.00 614.60

Mean 1.36 0.44 29.06 3.55 7990.68 39.42

SD 0.69 0.13 109.88 1.77 22,741.55 26.24

2013

Min 0.02 − 0.04 1.01 0.05 − 34,284.00 8.30

Max 5.58 0.71 10,561.62 14.32 129,931.00 435.90

Mean 1.16 0.38 46.88 2.93 5808.82 34.39

SD 0.52 0.14 449.65 1.31 19,298.35 29.73

2014

Min − 0.10 − 0.23 1.01 − 0.27 − 51,894.00 6.60

Max 3.11 0.74 5433.48 7.67 109,848.00 250.40

Mean 1.03 0.33 31.41 2.60 4122.18 29.55

SD 0.44 0.14 278.52 1.10 16,584.94 16.60

2015

Min − 1.38 − 0.27 − 0.34 − 3.51 − 136,696.00 9.30

Max 6.34 0.75 5141.23 16.04 109,849.00 519.00

Mean 0.96 0.29 29.13 2.52 3709.24 44.42

SD 0.57 0.19 222.75 1.45 15,834.01 41.59
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Fig. 9 Box plots of monthly risk class sizes by year

Fig. 10 Monthly cut-off points, 2010–2015
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