Due to fundamental results of Igusa and Mumford the N = 2(g-1 )(2(g) + 1) theta constants of first kindSigma(n integral) exp pi i(Z[n + a/2] + 2b' (n + a/2)), a,b integral.define for each genus g an injective holomorphic map of the Satake compactification X-g(4, 8) = (H-g/Gamma(g)[4,8]) over bar into the projective space PN-1. Moreover, this map is biholomorphic onto the image outside the Satake boundary. It is not biholomorphic on the whole in the cases g >= 6. Igusa also proved that in the cases g <= 2 this map is biholomorphic onto the image. In this paper we extend this result to the case g = 3. So we show that the theta mapX-3(4,8) -> P-35is biholomorphic onto the image. This is equivalent to the statement that the image is a normal subvariety of P-35.
On the variety associated to the ring of theta constants in genus 3 / Freitag, Eberhard; Manni, Riccardo Salvati. - In: AMERICAN JOURNAL OF MATHEMATICS. - ISSN 0002-9327. - 141:3(2019), pp. 705-732. [10.1353/ajm.2019.0021]
On the variety associated to the ring of theta constants in genus 3
Manni, Riccardo Salvati
2019
Abstract
Due to fundamental results of Igusa and Mumford the N = 2(g-1 )(2(g) + 1) theta constants of first kindSigma(n integral) exp pi i(Z[n + a/2] + 2b' (n + a/2)), a,b integral.define for each genus g an injective holomorphic map of the Satake compactification X-g(4, 8) = (H-g/Gamma(g)[4,8]) over bar into the projective space PN-1. Moreover, this map is biholomorphic onto the image outside the Satake boundary. It is not biholomorphic on the whole in the cases g >= 6. Igusa also proved that in the cases g <= 2 this map is biholomorphic onto the image. In this paper we extend this result to the case g = 3. So we show that the theta mapX-3(4,8) -> P-35is biholomorphic onto the image. This is equivalent to the statement that the image is a normal subvariety of P-35.File | Dimensione | Formato | |
---|---|---|---|
Freitag_Variety-associated_2019.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
258.85 kB
Formato
Adobe PDF
|
258.85 kB | Adobe PDF | |
Freitag_preprint_Variety-associated_2019.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
224.07 kB
Formato
Adobe PDF
|
224.07 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.