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Abstract. Due to fundamental results of Igusa [Ig1] and Mumford [Mu] the N = 2g−1(2g +1) theta
constants of first kind

∑

n integral

expπi
(
Z[n+a/2]+2b′(n+a/2)

)
, a,b integral.

define for each genus g an injective holomorphic map of the Satake compactification Xg(4,8) =

Hg/Γg [4,8] into the projective space PN−1. Moreover, this map is biholomorphic onto the image
outside the Satake boundary. It is not biholomorphic on the whole in the cases g ≥ 6 [Ig5]. Igusa also
proved that in the cases g ≤ 2 this map biholomorphic onto the image [Ig2]. In this paper we extend
this result to the case g = 3. So we show that the theta map

X3(4,8)−→ P
35

is biholomorphic onto the image. This is equivalent to the statement that the image is a normal subva-
riety of P35.

Introduction. The algebra R(g,q) is generated by the theta constants of sec-
ond kind

fa,q =
∑

n∈Zg

expπiqZ[n+a/q].

Here Z varies in the Siegel upper half space of genus g and a is a vector (column)
in Z

g. We use the standard notation Z[a] = a′Za where a′ is the transposed of a.
The series depends only on ±a mod q. We always assume that q is an even natu-
ral number. The functions fa,q are modular forms with respect to the Igusa group
Γg[q,2q] (Sect. 1). In particular, the series fa,q/fb,q are invariant under Γg[q,2q].
The space of modular forms [Γg[q,2q],r/2], r ∈ Z, consists of all holomorphic
functions f on the Siegel half plane Hg such that f/f r

a,q are invariant, where in the
case g = 1 the usual regularity condition at the cusps has to be added. The algebra
of modular forms is

A
(
Γg[q,2q]

)
=

⊕

r∈Z

[
Γg[q,2q],r/2

]
.
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2 E. FREITAG AND R. SALVATI MANNI

By a result of Baily, the projective variety of the graded algebra A(Γg[q,2q]) can be
identified, as a complex space, with the Satake compactification of Hg/Γg[q,2q],

proj
(
A
(
Γg[q,2q]

))
=Xg(q,2q) :=Hg/Γg[q,2q].

Due to basic theorems of Igusa [Ig1] and Mumford [Mu], we have an everywhere
regular, birational map

Hg/Γg[q,2q]−→ proj
(
R(g,q)

)
.

This implies that A(Γg[q,2q]) is the normalization of R(q,g). In the case q = 4
this map is bijective and biholomorphic outside the boundary. The case q = 2 is
exceptional. Here one knows that the ring R(g,2) is normal if g ≤ 3 [Ru]. The
variety proj(R(g,2)) is not normal when g ≥ 4, [SM]. It is not known if the map
is bijective if g > 3. The ring R(g,4) is normal if and only if g ≤ 2 [Ig2, Ig4].
Moreover the ideal of the relations is generated by the so called Riemann relations.
We shall obtain the following main result.

THEOREM. The map

H3/Γ3[4,8] −→ proj
(
R(3,4)

)

is biholomorphic.

We mention that Igusa uses a slightly different setting. He uses the theta con-
stants of the first kind

∑

n integral

expπi(Z[n+a/q]+2b′(n+a/q)), a,b integral.

There is a close relation to the theta constants of second kind. For example, one
can show that the ring R(g,q2) is generated the “theta constants of first kind”. In
the case g = 3, q = 2, these are 36 different (up to sign) non-zero theta constants
of first kind.

In a forthcoming paper we shall consider the projective variety related to Rie-
mann’s relations in genus g = 3.

1. Local rings of modular varieties and their completion. We denote by

Hg =
{
Z ∈ C

g×g; Z = Z ′, ImZ positive definite
}

the Siegel upper half plane and by Sp(g,Z) the Siegel modular group acting on Hg

through Z �→ (AZ +B)(CZ +D)−1. Recall that the principal congruence sub-
group is defined as

Γg[q] = kernel
(

Sp(g,Z)−→ Sp(g,Z/qZ)
)
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and Igusa’s subgroup as

Γg[q,2q] :=
{
M ∈ Γg[q], (CD′)0 ≡ (AB′)0 ≡ 0 mod2q

}
.

Here S0 denotes the column built of the diagonal of a square matrix S. We gener-
alize results from [FK, Kn]. We consider the Siegel modular variety Hg/Γg[q,2q]
and the Satake compactification

Xg(q,2q) =Hg/Γg[q,2q].

For a decomposition g = g1 + g2 we consider the map

Hg1 −→Xg(q,2q), τ �−→ lim
t→∞

(
τ 0
0 it

)
.

We call the image of τ the standard boundary point related to τ . The full Siegel
modular group Sp(g,Z) acts on Xg(q,2q). Every boundary point is equivalent to
a standard boundary point. Hence we can restrict to study the standard boundary
points. We recall the description of the analytic local ring of Xg(q,2q) at such a
point [Ig3].

1.1. Definition. Let U ⊂ Hg1 be an open subset and let T be a semipositive
integral symmetric g2 × g2-matrix. The space JT (U) consists of all holomorphic
functions f : U ×C

g2×g1 → C with the transformation property

f(τ,z+ qh) = f(τ,z),

f(τ,z+ qhτ) = exp{−πi tr(qT [h]τ +2h′Tz)}f(τ,z) for h ∈ Z
g2×g1.

For a point τ0 ∈Hg1 we define

JT (τ0) = lim−→JT (U),

where U runs through all open neighborhoods of τ0.

In the case T = 0 we have an everywhere holomorphic abelian function of z
which must be constant. So we see

J0(τ0) =Oτ0 ,

where Oτ0 denotes the local ring of the complex manifold Hg1 at τ0. In the case
q ≥ 4 we can identify Oτ0 with the local ring of Hg1/Γg1 [q,2q] at the image of τ0,
and we can consider Oτ0 as subring of the local ring of Xg(q,2q) at the cusp related
to τ0. The spaces JT (τ0) are modules over Oτ0 , moreover multiplication gives a
map

JT1(τ0)⊗Oτ0
JT2(τ0)−→JT1+T2(τ0).
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If we evaluate elements of the space JT (τ0) at the point τ0, we get spaces of theta
functions:

1.2. Definition. The space JT (τ0) consists of all holomorphic functions f :
C
g2×g1 → C with the transformation property

There is an extra left delimiter
or a missing right one. Please
check. f(z+ qh) = f(z),

f
(
z+ qhτ0

)
= exp

{
−πi tr

(
q
(
T [h]τ0 +2h′Tz

)}
f(z) for integral h.

We have the evaluation map

JT (τ0)−→ JT (τ0).

1.3. LEMMA. The Oτ0 modules JT (τ0) are finitely generated and free.

Proof. Since the elements of JT (τ0) are periodic in z, they admit a Fourier
expansion

f(τ,z) =
∑

k integral

ck exp2πi tr(k′z)/q.

The Fourier coefficients are in Oτ0 . The second equation in Definition 1.1 gives

ck+qTh = exp
(
πi tr

(
qT [h]τ +2k′hτ

))
ck.

In the case that T is invertible, one can prescribe the Fourier coefficients ck for a
system of representatives mod qTZg2×g1 and then reconstruct f as a linear com-
bination of theta functions. This shows that JT (τ0) is free of finite rank. The case
of a singular T can be reduced to the previous case in a standard way (taking a
quotient by the nullspace of T ). �

The same argument gives generators of the vector space JT (τ0) and hence the
following result.

1.4. LEMMA. The evaluation map

JT (τ0)−→ JT (τ0)

is surjective.

Another way to express this is

JT (τ0) = JT (τ0)⊗Oτ0
C.

Now we assume q≥ 4. Then the groups Γg[q,2q] contain no element of finite order
besides the unit matrix. In this case the analytic local ring San(τ0) of Xg(q,2q) at
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the image of τ0 can be described as the set of series

∑

T

aT exp(πi tr(TW )/q), aT ∈ JT (τ0),

aT [U ](τ,z) = aT (τ,zU
′) for U ∈ GL(g2,Z)[q],

where T runs through all symmetric integral semipositive g2 × g2-matrices and
such that a certain convergence condition is satisfied [Ig3]. In the paper [Ig3] it has
been shown that the “Poincaré series”

HT,f (τ,z,W ) =
∑

f(τ,WU ′)exp(πi tr(WT [U ])/q), f ∈ JT (τ0),

have this convergence property. The sum is taken over distinct T [U ] for U ∈
GL(g2,Z)[q]. From the Supplement of Theorem 1 in [Ig3], also the following result
follows.

1.5. PROPOSITION. The maximal ideal of the ring San(τ0) is generated by the
Poincaré series HT,f for non-zero T and by the maximal ideal of the local ring
Oτ0 .

We introduce a filtration mn on San(τ0). For a semipositive integral T we de-
note by λ(T ) the biggest number k such that T can be written as T = T1+ · · ·+Tk

with non-zero integral and semipositive Ti. In the case T = 0 this is understood as
λ(T ) = 0. The associated filtration is

nn =
{
P ∈ San(τ0); aT = 0 for λ(T )< n

}
.

Then we define mn to be the ideal generated by

m
(
Oτ0

)μ
nν , μ+ν ≥ n,

where m(Oτ0) denotes the maximal ideal of Oτ0 . The ideal m=m1 is the maximal
ideal of San(τ0) and we have

m1 ⊃m2 ⊃ ·· · and mμmν ⊂mμ+ν .

The Poincaré series HT,f is contained in mn if either λ(T )≥ n or if λ(T )< n and

f ∈m(Oτ0)
n−λ(T )JT (τ0).

So we have

San(τ0)/mn
∼=

⊕

λ(T )<n

JT (τ0)/m(Oτ0)
n−λ(T )JT (τ0).
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We want to get rid of convergence conditions and therefore introduce a formal
variant. First we define

ĴT (τ0) = JT (τ0)⊗Oτ0
Ôτ0

where Ôτ0 denotes the completion of Oτ0 . Then we introduce the formal ring Ŝ(τ0)

that consists of all formal series
∑

T

aT exp(πi tr(TW )/q), aT ∈ ĴT (τ0),

aT [U ](τ,z) = aT (τ,zU
′) for U ∈ GL(g2,Z)[q].

The matrices T run through all integral semipositive g2 × g2-matrices.
The ring Ŝ(τ0) is just the completion of San(τ0) with respect to the filtration

(mn). We denote by S̄(τ0) the usual completion (by the powers of the maximal
ideal m). From mn ⊂mn we obtain a natural homomorphism

S̄(τ0)−→ Ŝ(τ0).

1.6. THEOREM. The natural homomorphism

S̄
(
τ0
)
−→ Ŝ

(
τ0
)

is an isomorphism.

The case of the zero-dimensional boundary components has been treated (in
the more general context of arbitrary tube domains) by Knöller [Kn] who refers to
[FK] where the special case of the Hilbert modular group has been treated.

Proof of Theorem 1.6. First we prove that the homomorphism is surjective.
Since San(τ0)/m

k is a finite dimensional vector space we find for each k an r

such that

mk ∩mr =mk ∩mr+1 = · · · .

Therefore we can construct inductively a sequence of natural numbers r1 <r2 < · · ·
such that

mr1 ⊂m2 +mr2, mr2 ⊂m3 +mr3, mr3 ⊂m4 +mr4, . . . .

An arbitrary element f ∈ Ŝ(τ0) can be written in the form

f = f1 + f2 + · · · , fi ∈mri .

We construct inductively elements gj ∈mj , aj ∈mrj such that

f1 = g1 +a2, f2 +a2 = g3 +a3, f3 +a3 = g4 +a4, . . . .
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Then

f1 + f2 + · · ·fk−1 = g1 + g2 + · · ·gk+ak.

The series g1 + g2 + · · · converges in S̄(τ0). Its image in Ŝ(τ0) is f . This shows
the surjectivity. We now know that Ŝ(τ0) is noetherian too. To show injectivity it is
enough that the dimension of Ŝ(τ0) is greater or equal than dim S̄(τ0)= g(g+1)/2.
Here we use the well-known result of commutative algebra that for every ideal a
in a noetherian ring R that contains a non-zero divisor we have dimR > dimR/a.
The dimension of a local noetherian ring can be computed as the highest coefficient
of the Hilbert Samuel polynomial. Hence we must show that

There is an extra left delimiter
or a missing right one. Please
check.dim Ŝ

(
τ0
)
/m̂k

kg(g+1)/2−1
, ( m̂ maximal ideal of Ŝ

(
τ0
)
,

is unbounded. We define the ideals m̂k in Ŝ(τ0) in the same way as the ideals mk

in San(τ0). This means that we set

n̂n =
{
P ∈ Ŝ

(
τ0
)
; aT = 0 for λ(T )< n

}

and m̂n to be the ideal generated by

m(Ôτ0)
μ n̂ν , μ+ν ≥ n,

where m(Ôτ0) denotes the maximal ideal of Ôτ0 . It is sufficient to show that

dim Ŝ(τ0)/m̂k

kg(g+1)/2−1

remains unbounded. The description above by means of Poincaré series shows

dim Ŝ
(
τ0
)
/m̂k = dimSan(τ0

)
/mk.

During the following estimates, T always runs through a system of semipositive
integral matrices mod GL(g2,Z)[q] ) and C1,C2, . . . will denote suitable constants.

There is an extra right
delimiter or a missing left one.
Please check.

We have

dim Ŝ(τ0)/m̂k = dimSan(τ0)/mk

=
∑

ν+λ(T )=k

dimJT (τ0)/m(Oτ0)
νJT (τ0)

≥ C1

∑

ν+λ(T )=k

dimJT (τ0)ν
g1(g1+1)/2.
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We only keep T which are invertible. Then the dimension of JT (τ0) is det(T )g1 up
to a constant factor [Ig3]. We obtain

≥ C2

∑

ν+λ(T )=k

(detT )g1νg1(g1+1)/2.

A trivial estimate states tr(T ) ≥ λ(T ). We claim that also (detT )1/g2 is greater
or equal than λ(T ) up to a constant factor. Since this statement is invariant under
unimodular transformation, it is sufficient to prove this for Minkowski reduced
matrices. It follows from the standard inequalities for Minkowski reduced matrices
(cf. [Fr, p. 33]). Therefore we get

≥C3

∑

ν+λ(T )=k

λ(T )g1g2νg1(g1+1)/2.

Now we restrict the summation to the range k/2 ≤ λ(T ) ≤ 3k/4. Then ν ≥ k/4.
Hence we get

≥ C4k
g1g2+g1/(g1+1)/2 #

{
T ;T modGL(g2,Z)[q], k/4 ≤ λ(T )≤ 3k/4

}
.

The asymptotic behaviour of the number of all T with an upper bound for λ has
been determined by Knöller [Kn, Satz 2.3.1]. This gives

≥ C5k
g1g2+g1/(g1+1)/2 ·kg2(g2+1)/2 = C5k

g(g+1)/2.

This finishes the proof of Theorem 1.6. �

2. Optimal decompositions. We use the notation

Tg =
{

integral semipositive g× g-matrices
}
.

The group GL(g,Z) acts on Tg through T �→ T [U ] = U ′TU from the right. In our
context, matrices T ∈ Tg of rank one are important.

We call a non-zero element of Tg irreducible if it cannot be written as sum of
two non zero elements of Tg. We recall that for a semipositive T ∈ Tg we denote by
λ(T ) the biggest number k such that T can be written as T = T1+ · · ·Tk with non-
zero Ti ∈ Tg. Notice that the irreducible elements T are characterized by λ(T ) = 1
and that λ(T ) is invariant under unimodular transformations.

2.1. Definition. Let T be a semipositive definite integral matrix. A decompo-
sition into irreducible integral matrices

T = T1 + · · ·+Tk, λ(T ) = k,

is called q-optimal if all Ti are of rank 1 and if for arbitrary U1, . . . ,Uk in
GL(g,Z)[q] one of the following two conditions holds.

(a) λ(T1[U1]+ · · ·+Tk[Uk])> k.
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(b) T1[U1]+ · · ·+Tk[Uk]∼ T modGL(g,Z)[q].

We will make use of the following two simple facts.
(1) If T = T1 + · · ·+Tk is optimal then T [U ] = T1[U ]+ · · ·+Tk[U ] is optimal

for all U ∈ GL(g,Z).
(2) If T = T1 + · · ·+Tk is optimal then

(
T 0
0 0

)
=

(
T1 0
0 0

)
+ · · ·+

(
Tk 0
0 0

)

is optimal too.
An integral matrix is called primitive if its entries are coprime. Primitive semi-

positive matrices of rank 1 can be written as products

T = aa′, a primitive column,

where a is unique up to the sign. The group GL(g,Z) acts transitively on the set of
all primitive columns. Hence it acts transitively on the set of all primitive integral
matrices of rank 1.

2.2. LEMMA. Let q = 2 or q = 4. Two primitive semipositive integral matrices
T,S of rank one are equivalent modGL(g,Z)[q] if and only if they are congruent
mod q (i.e., T ≡ S modq).

Proof. We write T,S in the form T = aa′, S = bb′. There must be an index i

such that ai is odd. From a2
i ≡ b2

i and q = 2,4 we conclude ai ≡±bi mod 4. Since
we can replace b by −b we can assume ai ≡ bi mod q. Then aiaj ≡ bibj implies
a≡ b mod q. Hence there exists a matrix U ∈ GL(g,Z)[q] such that b= Ua. This
shows S = T [U ]. �

2.3. LEMMA. Let

T =

(
t0 t1

t1 t2

)
, 0 ≤ t1 ≤ t0, t2,

be an integral semi positive matrix. Then

λ(T ) = t0 + t2 − t1.

Proof. The equality

T = t1

(
1 1
1 1

)
+(t0 − t1)

(
1 0
0 0

)
+
(
t2 − t1

)(0 0
0 1

)

shows λ(T ) ≥ t0 + t2 − t1. We have to show the reverse inequality. Let T = T1 +

· · ·+Tk, k = λ(T ), where the Ti are integral, positive semidefinite and different
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from 0. Consider the matrix

S =

(
1 −1/2

−1/2 1

)
.

It is positive definite. Obviously

t0 + t2 − t1 = tr(TS) = tr(ST1)+ · · ·+ tr(STk)≥ k = λ(T ).

This implies λ(T )≤ t0 + t2 − t1. �

2.4. LEMMA. Assume that T is a positive definite integral 2×2-matrix. Then

λ(T )≥ 3
2

√
detT .

Proof. Since λ and det are unimodular invariant, we can assume that T is
Minkowski reduced (0 ≤ 2t1 ≤ t0 ≤ t2). Then

λ(T ) = t0 + t2 − t1 ≥
3
4
(t0 + t2)≥

3
2

√
t0t2 ≥

3
2

√
t0t2 − t2

1. �

2.5. LEMMA. Let

T =

(
t1 t′

t T2

)
, T2 ∈ Tg−1,

be an integral primitive semipositive g× g-matrix of rank 1. Assume

λ

(
t1 +1 t′

t T2

)
= 2.

Then T2 is primitive or zero.

Proof. After a suitable unimodular transformation with a matrix of the form(
1 0
0 U

)
we can assume that

T2 =

(
d 0
0 0

)
.

We have to show d≤ 1. We have

T =

⎛

⎝
t1 s 0
s d 0
0 0 0

⎞

⎠ ,

hence

det

(
t1 +1 s
s d

)
= d

and the claim follows from Lemma 2.4. �
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2.6. LEMMA. Let T be a semipositive g× g-matrix of rank one with coprime
entries and let U ∈ GL(g,Z)[2] such that λ(T +T [U ]) = 2. Then T [U ] = T .

Proof. This statement is invariant under T �→ T [V ] where V ∈ GL(g,Z).
Hence we can assume that T is the matrix with t11 = 1 and zeros elsewhere. Let

H = T [U ] =

(
h1 h′

h H2

)
≡

(
1 0
0 0

)
mod2.

The entries of H2 are even and hence not coprime. From Lemma 2.5 follows that
they are zero. Since H is semipositive this implies h = 0 and h1 = 1. This shows
H = T [U ] = T . �

3. Degree two. We prove the existence of optimal decompositions in the
case g = 2.

3.1. PROPOSITION. In the cases g = 2, q arbitrary (even), every semipositive
integral matrix T admits an optimal decomposition.

This proposition is invariant under unimodular transformation. Hence it is
enough to prove Proposition 3.1 for invertible Minkowski-reduced T (i.e., 0 ≤
2t12 ≤ t11 ≤ t22).

Proof of Proposition 3.1. We can assume that T is invertible and Minkowski
reduced. Then we claim that

T = (t0 − t1)E1 +(t2 − t1)E2 + t1E3 (k = λ(T ) = t0 + t2 − t1)

where

E1 =

(
1 0
0 0

)
, E2 =

(
0 0
0 1

)
, E3 =

(
1 1
1 1

)

and

r1 = t0 − t1, r2 = t2 − t1, r3 = t1.

is optimal (in both cases q = 2 and q = 4). We write the decomposition of T in the
form T1 + · · ·+Tk where Ti belong to {E1,E2,E3}. We have to consider

T̃ = T1[U1]+ · · ·+Tk[Uk], Ui ∈ GL(2,Z)[q].

We can assume that λ(T̃ ) = λ(T ). Then we have to show that T and T̃ are equiva-
lent under the group GL(2,Z)[q]. From Lemma 2.6 we can assume that

Ti = Tk =⇒ Ui = Uk.
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Hence we can write

T̃ = r1E1[U1]+ r2E2[U2]+ r3E3[U3], Ui ∈ GL(2,Z)[q].

We can assume that U1 =E is the unit matrix. Since T is Minkowski reduced, r1 =

t0−t1 and r2 = t2−t1 both are positive. From Lemma 2.5 we see that (E2[U2])11 ≤
1. But since this expression is even, it must be zero. Then necessarily E2[U2] =E2.
So we can assume U1 =U2 =E. In the case r3 = 0 we are finished. Otherwise, we
can apply Lemma 2.5 again to see that the diagonal elements of E3[U3] are ≤ 1.
They are odd, hence both are 1. So we get

E3[U3] =

(
1 ±1
±1 1

)
.

In case of the plus sign we are done. The minus sign only can occur of q ≤ 2. Then
we can transform with

(
1 0
0 −1

)
which is a matrix in GL(2,Z)[2]. This completes the

proof of Proposition 3.1. �

4. Degree three. We prove the existence of optimal decompositions in the
case g = 3.

4.1. PROPOSITION. In the cases g = 3, q = 2,4, every semipositive integral
matrix T admits an optimal decomposition.

We recall from [CS, Chapt. 15, Sect. 10] that a 3×3-matrix symmetric positive
definite real matrix T is reduced in the sense of Minkowski if

t11 ≤ t22 ≤ t33,

0 ≤ 2t12 ≤ t11, 0 ≤ 2t23 ≤ t22, 2|t13| ≤ t11,

2
(
t12 + t23 + |t13|

)
≤ t11 + t22.

4.2. LEMMA. Let T be a positive definite reduced integral 3×3-matrix. Then

λ(T ) =

{
t11 + t22 + t33 − t12 − t23 + t13 if t13 ≤ 0,

t11 + t22 + t33 − t12 − t23 − t13 +min
(
t12, t13, t23

)
if t13 > 0.

Proof. The following system of matrices will play a basic role.

E1 =

⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ , E2 =

⎛

⎝
0 0 0
0 1 0
0 0 0

⎞

⎠ , E3 =

⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ , E4 =

⎛

⎝
1 1 0
1 1 0
0 0 0

⎞

⎠ ,

E5 =

⎛

⎝
0 0 0
0 1 1
0 1 1

⎞

⎠ , E6 =

⎛

⎝
1 0 1
0 0 0
1 0 1

⎞

⎠ , E7 =

⎛

⎝
1 1 1
1 1 1
1 1 1

⎞

⎠ .
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It is easy to check that it is a system of representatives of integral semipositive
matrices of rank one with respect to the action T �→ T [U ] of the group GL(2,Z)[3].
We also introduce the modified matrix

E−
6 =

⎛

⎝
1 0 −1
0 0 0
−1 0 1

⎞

⎠ .

In the case t13 ≤ 0 we use the decomposition

T = (t11 − t12 + t13)E1 +(t22 − t12 − t23)E2 +(t33 + t13 − t23)E3

+ t12E4 + t23E5 − t13E
−
6 .

We notice that E7 does not occur in this decomposition. Since the coefficients
are nonnegative, we get λ(T ) ≥ t11 + t22 + t33 − t12 − t23 + t13. For the reverse
inequality we use the positive matrix

S =
1
2

⎛

⎝
2 −1 1
−1 2 −1
1 −1 2

⎞

⎠ .

The product of a positive and a non-zero semipositive matrix has positive trace,
hence tr(SH) > 0 is a positive integer. This implies tr(SH) ≥ λ(H), in fact if
H =H1+ · · ·Hk, then SH = SH1+ · · ·SHk. In our case we get λ(T )≤ tr(ST ) =
t11 + t22 + t33 − t12 − t23 + t13. This completes the proof in the first case t13 ≤ 0.

In the second case, t13 > 0, we use a similar decomposition. Setting m =

min{t12, t23, t13}, we take

T = (t11 − t12 − t13 +m)E1 +(t22 − t12 − t23 +m)E2 +(t33 − t23 − t13 +m)E3

+(t12 −m)E4 +(t23 −m)E5 +(t13 −m)E6 +mE7

which shows λ(T )≥ t11 + t22 + t33 − t12 − t13 − t23 +m. We observe that at least
one of the coefficients of E4,E5,E6 is 0. To prove the reverse inequality one uses
tr(ST )≥ λ(T ) for one of the following three matrices

S =

⎛

⎝
2 0 −1
0 2 −1
−1 −1 2

⎞

⎠ or

⎛

⎝
2 −1 −1
−1 2 0
−1 0 2

⎞

⎠ or

⎛

⎝
2 −1 0
−1 2 −1
0 −1 2

⎞

⎠

depending on whether m is t12 or t23, or t13. �
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4.3. LEMMA. Let T be an integral positive definite 3×3-matrix. Then

λ(T )3 ≥ 8detT.

Proof. We can assume that T is reduced. From the inequality

2
(
t12 + t23 + |t13|

)
≤ t11 + t22 ≤ t11 + t33 ≤ t22 + t33

together with the trivial inequality

λ(T )≥
(
t11 + t22 + t33 − t12 − t23 −|t13|

)

we get

λ(T )≥ 2
t11 + t22 + t33

3
≥ 2

(
t11t22t33

)1/3
.

The statement of the Lemma now follows from Hadamard’s inequality

t11t22t33 ≥ detT. �

4.4. LEMMA. Let T be a matrix of rank ≤ 1. Then

det
(
E1 +E2 +T

)
= t33.

In addition, let T be semipositive and integral. Then one of the following two in-
equalities hold.

(a) λ(E1 +E2 +T )> 3.
(b) t33 ≤ 1.

Proof. The computation of the determinant is easy. Hence we have to prove
only the second statement. We assume that t33 > 1. Since it is a square, we obtain
t33 ≥ 4. But t33 is the determinant of the matrix. Hence we get from Lemma 4.3
that λ3 ≥ 32. This gives λ(T )> 3. �

We will apply several times not only Lemma 4.4 but also an obvious general-
ization. Let U ∈ GL(3,Z). Then one has for rankT ≤ 1

det

((
E 0
0 0

)
[U ]+T

)
= T [U−1]33.
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4.5. COROLLARY OF LEMMA 4.4. Assume that T is a semipositive integral
matrix of rank one. Then

λ(E1 +E2 +T ) = 3 =⇒ t33 ≤ 1,

λ(E1 +E3 +T ) = 3 =⇒ t22 ≤ 1,

λ(E1 +E4 +T ) = 3 =⇒ t33 ≤ 1,

λ(E1 +E5 +T ) = 3 =⇒ t22 −2t23 + t33 ≤ 1,

λ(E2 +E3 +T ) = 3 =⇒ t11 ≤ 1,

λ(E2 +E4 +T ) = 3 =⇒ t33 ≤ 1,

λ(E2 +E5 +T ) = 3 =⇒ t11 ≤ 1,

λ(E3 +E4 +T ) = 3 =⇒ t11 −2t12 + t22 ≤ 1,

λ(E3 +E5 +T ) = 3 =⇒ t11 ≤ 1,

λ(E4 +E5 +T ) = 3 =⇒ t11 + t22 + t33 +2t12 −2t23 +2t13 ≤ 1.

For the proof of Proposition 4.1 we can assume that T is positive definite. The
proposition is invariant under arbitrary unimodular transformation. Hence we can
assume that T is reduced. We have to differ between the two cases:

Case A: t13 ≤ 0.
Case B: t13 > 0.

We start with case A. We use the decomposition

T = r1E1 + r2E2 + r3E3 + r4E4 + r5E5 + r6E
−
6 ,

r1 = t11 + t13 − t12, r2 = t22 − t12 − t23, r3 = t33 + t13 − t23,

r4 = t12, r5 = t23, r6 =−t13.

We will show that it is q-optimal in both cases q = 2 and q = 4. The reduction
inequalities read as

r4 ≤ r1 + r6, r1 + r6 ≤ r2 + r5,

r6 ≤ r1 + r4, r2 + r4 ≤ r3 + r6,

r5 ≤ r2 + r4, r5 + r6 ≤ r1 + r2.

Since T is positive definite we have also that the diagonal elements are positive, in
particular

r1 + r4 + r6 > 0.

We also mention that at least two of the coefficients r1, r2, r3 do not vanish. More
precisely we state.

Only the following 4 cases are possible.
(1) r1 > 0, r2 > 0, r3 > 0.
(2) r1 > 0, r2 > 0, r3 = 0 and r6 > 0, r4 = 0, r1 = r2 = r5 = r6.



16 E. FREITAG AND R. SALVATI MANNI

(3) r1 > 0, r2 = 0, r3 > 0 and r6 = 0, r1 = r4 = r5.
(4) r1 = 0, r2 > 0, r3 > 0 and r6 > 0, r4 = r6.
For the proof one has to discuss the three cases ri = 0 separately. We start with
Case (1) There is nothing to prove.
Case (2) r3 = 0. Thus t33−t23+t13 = 0. Hence t23 =−t13 = t33/2, thus r6 > 0

and by the basic inequalities

2
(
t12 + t33

)
≤ t11 + t22 ≤ 2t33.

Hence

t12 = 0; t33 = t11 = t22.

This implies r4 = 0, r1 = r2 = r5 = r6.
We observe that in this case the matrix T has the form

T =

⎛

⎝
2a 0 −a
0 2a a
−a a 2a

⎞

⎠ .

Case (3) and Case (4) can be proved in similar way, we just observe that the corre-
sponding matrices T have the forms

T =

⎛

⎝
2a a 0
a 2a a
0 a c

⎞

⎠ , T =

⎛

⎝
2a a −a
a b h
−a h c

⎞

⎠ .

Now we will prove that the described decomposition

T = r1E1 + · · ·r5E5 + r6E
−
6 .

is q-optimal in each of the 4 cases. As in the case g= 2 we can apply Lemma 2.6 to
formulate Proposition 4.1 as follows. Consider matrices U1, . . . ,U6 ∈ GL(3,Z)[q]
and

T̃ = r1E1[U1]+ · · ·r5E5[U5]+ r6E
−
6 [U6].

Assume λ(T ) = λ(T̃ ). Then T ∼ T̃ modGL(3,Z)[q].

Proof of Proposition 4.1 in the case (A1). Without loss of generality we can
assume that in the decomposition of T̃ we have U1 = E. Then we have λ(E1 +

E2[U2]) = 2 since this sum is a partial sum of T̃ . Now Lemma 2.5 shows that

E2[U2] =H =

(
∗ ∗
∗ H2

)
where H2 is primitive.

(The other case in Lemma 2.5, H2 = 0, cannot arise since the first diagonal element
of H2 is odd.) We have the freedom to act on H with a matrix of the form

(
1 0
0 V

)
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where V ∈ GL(2,Z)[q] since this does not change E1. Thanks to Lemma 2.2 we
can replace H2 by the matrix

(
1 0
0 0

)
. Since H has rank one, h11 must be zero. The

semidefiniteness now implies H = E2. Hence we can assume now U1 = U2 = E.
Now we use λ(E1 +E2 +E3[U3]) = 3. Lemma 4.4 shows E3[U3]33 = 1. (Zero is
not possible since this element is odd.) We still can apply transformations with ma-
trices of GL(3,Z)[2] if they fix E1 and E2. Hence we can multiply simultaneously
the third row (column) by a multiple of q and add it to another row (column). This
allows us to assume

E3[U3] =

⎛

⎝
∗ ∗ 0
∗ ∗ 0
0 0 1

⎞

⎠ .

Since the rank is one we get E3[U3] = E3. Hence we can assume U1 = U2 = U3 =

E. Next we apply Corollary 4.5 to show that all diagonal elements of the matrices
Ei[Ui], i > 3, are 0 or 1. This shows that

E4[U4] = E4[D4], E5[U5] = E5[D5], E−
6 [U6] = E−

6 [D6]

where Di are diagonal matrices in GL(3,Z). In the case q = 4 we are finished since
then the congruence mod 4 shows Di =E. So we can assume q = 2, The diagonal
matrices fix E1,E2,E3. Hence we can assume first D4 = E and then D5 = E.
There remain two possibilities E−

6 [Di] =E6 or E−
6 [Di] =E−

6 . The second is what
we want, hence it remains to discuss E−

6 [Di] = E6. In this case we claim that one
of the r4,r5 is zero. Otherwise E4 +E5 +E6 = E1 +E2 +E3 +E7 would be a
partial sum of T̃ which is not possible. So assume r4 = 0. Then there is a diagonal
matrix D with the property E6[D] = E−

6 which does not change anything in the
first five summands. This finishes the proof of (A1).

Proof of Proposition 4.1 in the case (A2). The decomposition of T reads as

T = r1
(
E1[U1]+E2[U2]+E5[U5]+E−

6 [U6]
)
.

As in the case (A1) it is no loss of generality to assume U1 = U2 = U5 = E. Let
H = E−

6 [U6]. From λ(E1 +E2 +H) = 3 and Corollary 4.5 follows h33 = 1 and
similarly from λ(E2 +E5 +H) = 3 follows h11 = 1. Since h11h33 = h2

13 we have
h13 = ±1. But t13 ≤ 0, hence h13 = −1. The matrix H is semipositive of rank 1.
Hence it is of the form

H =

⎛

⎝
1 a −1
a a2 −a
−1 −a 1

⎞

⎠ .

Now we use λ(E1+E5+H) = 3. Lemma 4.4 shows (a+1)2 ≤ 1. Since a is even,
we get a = 0 or a = −2. In the case a = 0 we are done. The case a = −2 occurs
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only if q = 2. Then we can apply the transformation

⎛

⎝
−1 0 0
0 1 0
0 −2 −1

⎞

⎠ ∈ GL(3,Z)[2].

It fixes E1,E2,E5 and sends H to E−
6 . This finishes the proof of (A2).

Proof of Proposition 4.1 in the case (A3). We have

T = r1(E1+E4+E5)+r3E3 and T̃ = r1
(
E1[U1]+E4[U4]+E5[U5]

)
+ r3E3[U3].

Again we can assume U1 = E. Considering the partial sum T1 + T3[U3] we can
reduce to U3 = E. Then, considering E1 +E3 +E4[U4], we get E4[U4]22 ≤ 1. It
must be 1 since it is odd. Now, applying to E4[U4] a unimodular substitution from
GL(3,Z)[q] that fixes E1 and E3, we can get U4 = E. So we can assume

T̃ = r1(E1 +E4 +E5[U5])+ r3E3.

Now we apply Corollary 4.5 to

(E1 +E3)+E5[U5], (E1 +E4)+E5[U5]

to obtain that E5[U5]22 = 1 and E5[U5]33 = 0. This means

E5[U5] =

⎛

⎝
a2 0 a
0 0 0
a 0 1

⎞

⎠ .

We have a≡ 0 mod q. We transform with the matrix from GL(2,Z)[q]

⎛

⎝
1 0 0
0 1 0

1−a 0 1

⎞

⎠ .

This transforms T̃ to T . This completes the proof of (A3).

Proof of Proposition 4.1 in the case (A4). We have

T = r2E2 + r3E3 + r4E4 + r5E5 + r4E
−
6 , r2,r3,r4 > 0,

T̃ = r2E2[U2]+ r3E3[U3]+ r4E4[U4]+ r5E5[U5]+ r4E
−
6 [U6].

Similar to the previous cases we can assume U2 =U3 =E. Since E2+E3+E4[U4]

is optimal, we get E4[U4]11 = 1. We can transform T̃ by a matrix from GL(3,Z)[q]
that fixes E2,E3. This means that we can multiply the first row (resp., column) of
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E4[U4] by a factor which is a multiple of q and add it to the second (or third row).
In this way we can get

E4[U4] =

⎛

⎝
1 1 0
1 ∗ ∗
0 ∗ ∗

⎞

⎠ .

Since it is matrix of rank one, we then have E4[U4] = E4. So we can assume U4 =

E. Now we assume r5 > 0. Then we can apply Lemma 4.4 to E2 +E3 +E5[U5] to
obtain E5[U5]11 = 0 (it is even) which implies

E5[U5] =

(
0 0
0 H

)
.

The 2× 2-matrix H is primitive, semidefinite of rank one and its entries are ≡ 1
mod q. Now Lemma 2.2 implies that it is of the form

H =

(
1 1
1 1

)
[U ], U ∈ GL(2,Z)[q].

So we can assume r5 = 0 or U5 = E. It remains to treat E−
6 [U6]. Since E2 +E3 +

E−
6 [U6] are optimal, we get E6[U6]11 = 1. Since E2 +E4 +E−

6 [U6] is optimal, we
get E6[U6]33 = 1. Since this matrix is symmetric and of rank 1, it is of the form

E−
6 [U6] =

⎛

⎝
1 a ±1
a a2 ±a
±1 ±a 1

⎞

⎠ , a≡ 0 modq.

In the case q = 0 the minus sign must be there. The case r5 = 0 can be transformed
to the case (A2). (Interchange the first and the third row and column). Hence we
can assume r5 > 0. Then we can consider E4 +E5 +E−

6 [U6] which is optimal.
Corollary 4.5 gives a2 ≤ 1 if the minus sign holds and (a−2)2 ≤ 1 if the plus sign
holds. In the first case we get a= 0 which finishes the proof. So as only possibility
q = 2 and

⎛

⎝
1 2 1
2 4 2
1 2 1

⎞

⎠

remains. One can transform this matrix by the matrix
⎛

⎝
1 2 0
0 −1 0
0 0 −1

⎞

⎠

to E−
6 . The other occurring matrices E2,E3,E4,E5 are fixed under this transfor-

mation. This finishes the proof in the case (A4). So case A is settled.
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It remains to treat the case (B). This case is very similar to the case (A). Hence
we can keep short. Recall that the case (B) we consider the decomposition

T = r1E1 + r2E2 + r3E3 + r4E4 + r5E5 + r6E6 + r7E7

where

r1 = t11 − t12 − t13 +m, r2 = t22 − t12 − t23 +m, r3 = t33 − t13 − t23 +m,

r4 = t12 −m, r5 = t23 −m, r6 = t13 −m, r7 =m.

The reduction conditions for T imply that all ri are nonnegative. At least one of
the r4,r5,r6 is zero. The remaining reduction inequalities are

r1 + r6 ≤ r2 + r5, r2 + r4 ≤ r3 + r6, r4 + r7 ≤ r1 + r6,

r5 + r7 ≤ r2 + r4, r6 + r7 ≤ r1 + r4, r5 + r6 +4r7 ≤ r1 + r2.

Since the diagonal elements of T are positive, we also have

r1 + r4 + r6 + r7 > 0.

Again we distinguish between 4 cases where either all r1,r2,r3 are positive or one
of them is zero. We claim that only the following 4 cases are possible,

(1) r1 > 0, r2 > 0, r3 > 0.
(2) r1 > 0, r2 > 0, r3 = 0 and r4 = r7 = 0, r1 = r2 = r5 = r6.
(3) r1 > 0, r2 = 0, r3 > 0 and r6 = r7 = 0, r1 = r4 = r5.
(4) r1 = 0, r2 > 0, r3 > 0 and r6 = r4 > 0, r5 = r7 = 0.
If m is positive, then we are in the first case. Hence we can assume for the rest

that m= 0.
As in the case (A) we list the corresponding matrices T . They have the forms

T =

⎛

⎝
2a 0 a
0 2a a
a a 2a

⎞

⎠ , T =

⎛

⎝
2a a 0
a 2a a
0 a c

⎞

⎠ , T =

⎛

⎝
2a a a
a b 0
a 0 c

⎞

⎠

Really the case (B3) does not occur, since it contradicts t13 > 0.

Proof of Proposition 4.1 in the case (B1). As in the proof of (A1) we can as-
sume that U1 = U2 = U3 = E and Ui = Di is diagonal for i > 3 if ri �= 0 In
the case q = 4 the congruence Ei[Di] ≡ Ei mod 4 implies Ei[Di] = Ei. Hence
we can assume q = 2. As we have shown during the proof of (A1), we have
λ(E4 +E5 +E6)> 3. Hence one of the r4,r5,r6 must be zero. The case r7 = 0 is
similar to the case (A1) and can be omitted. Hence we can assume r7 > 0. There
are three possibilities for E7[Di] which behave similarly. We restrict to treat the
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case

E7[Di] =

⎛

⎝
1 1 −1
1 1 −1
−1 −1 1

⎞

⎠ .

Since λ(E1 +E5+E7) = λ(E4+E−
6 +E2+E3)> 3 we must have r5 = 0. Simi-

larly λ(E2 +E6 +E7)> 3 shows E6. Now we can apply the diagonal matrix with
entries 1,1,−1. It transforms E7[D7] to E7 and keeps the other non-zero terms
fixed.

In the cases (B2) and (B4) the coefficient r7 is zero. Hence we are in nearly
the same situation as in the cases (A2) and (A4). This finishes the proof of Propo-
sition 4.1. �

5. Localizations of rings of theta series. The algebra R(g,q) of theta con-
stants is generated by the theta constants which we introduced in the introduction

fa,q =
∑

n∈Zg

expπiqZ[n+a/q].

We consider a decomposition g = g1 + g2 and

Z =

(
τ z′

z W

)
, τ ∈Hg1 , W ∈Hg2 .

According to [Ig3], the Fourier-Jacobi expansion with respect to W as variable can
be written in the form

fa,q =
∑

T

fT
a,q(τ,z)exp

πi
q

tr(TW ).

The coefficients fT
a,q can be considered as elements of JT (τ0). They can be differ-

ent from 0 only if the rank of T is ≤ 1.

5.1. PROPOSITION. Assume that T is an integral semipositive g2 × g2-matrix
of rank one and with coprime entries, i.e., T = a2a

′
2, a2 ∈ Z

g2 a primitive vector.
The Oτ0 -module JT (τ0) is generated by all

fT
a,q(τ,z) =

∑

n1∈Zg1

exp
πi
q
(τ [qn1 +a1]+2a′2z(qn1 +a1)), a=

(
a1

a2

)
,

where a1 runs through a system of representatives of Zg1/qZg1 .

Proof. The formula for the fT
a,q is obtained by a simple calculation. By

Nakayama’s Lemma, it is sufficient to show that the vector space JT (τ0) is gen-
erated by the fT

a,q(τ0,z). They span a space of dimension qg1 . But this is also
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the dimension of this space (see [Ig3] for some explanations about the dimen-
sions of the spaces JT (τ0). Also the proof of Lemma 1.3 can be extended to the
computation of the dimensions.). �

The image of the point in the standard component τ0 ∈ Hg1 , 0 ≤ g1 ≤ g, in
projR(g,q) corresponds to the homogenous maximal ideal m⊂R(g,q) consisting
of all elements f with the property

lim
t→∞

f

(
τ0 0
0 itE

)
= 0.

We consider its homogenous localization R(g,q)(m). It consists of quotients f/g,
g �∈ m, where f,g are homogenous and of the same degree. We are interested in
cases where this ring is normal.

5.2. LEMMA. The ring R(g,q)(m) is normal if and only if it is analytically
irreducible and if the ideal m generates the maximal ideal of Ŝ(τ0).

Proof. We recall that a local noetherian integral domain is analytically ir-
reducible if its completion is an integral domain. By Zarisk’s main theorem
R(g,q)(m) is analytically irreducible if it is normal. Hence we have to prove the
converse. We denote by R̂(g,q)(m) the completion of R(g,q)(m). The natural
homomorphism

R(g,q)(m) −→ San(τ0
)

between the algebraic and the analytic local ring, induces a homomorphism be-
tween the completions

R̂(g,q)(m) −→ Ŝ
(
τ0
)
.

It is surjective since m generates the maximal ideal of Ŝ(τ0). Since the left hand
side is an integral domain by assumption and since both sides have the same di-
mension, the map is also injective, hence it is an isomorphism. Hence R̂(g,q)(m)

is a normal integral domain. This implies that R(g,q)(m) is normal by faithfully
flatness of the map R(g,q)(m) → R̂(g,q)(m) [Ma, p. 156]. �

Igusa proved that in the case q = 4 that the map Hq/Γg[4,8]→ projR(g,4) is
bijective. Therefore the local rings of the right hand side are analytically irreducible
in this case.

5.3. PROPOSITION. Assume that each T ∈ Tg2 admits a q-optimal decomposi-
tion T = T1 + · · ·+Tk such that the multiplication map

JT1(τ0)⊗C . . . ,⊗CJTk
(τ0)−→ JT (τ0)

is surjective. Then R̂(g,q)(m) → Ŝ(τ0) is surjective.
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Proof. We have to show the following. Let P be an element of the maxi-
mal ideal of Ŝ(τ0). For each k there exists an element Q in the maximal ideal
of R(g,q)(m) such that P −Q ∈ m̂k. It is sufficient to show that for each P ∈ m̂k

there exists Q in the maximal ideal of R(g,q)(m) such that P −Q ∈ m̂k+1. By def-
inition of of m̂k we can write P as a sum of products AB where A is in m(Oτ0)

μ

and where the coefficients of B are zero for λ(T ) < ν and where μ+ ν = k. We
can prove the statement separately for A (with μ instead of k) and for B (with ν

instead of k). So it is sufficient to assume that P =A or P =B.

Case 1. P ∈ m(Oτ0)
μ. In this case we can use the result that the ring R(g1,q)

gives a biholomorphic embedding of Hg1/Γg1 [q,2q] into a projective space. Since
the natural projection R(g,q) → R(g1,q) is surjective, this implies that the max-
imal ideal of Oτ0 can be generated by (images of) linear combinations of fa,q ∈
R(g,q) which vanish at τ0 divided by a suitable fb,q that does not vanish at τ0.

Case 2. The coefficients of P are zero for λ(T ) < k. Then we choose an ad-
missible decomposition T = T1 + · · ·+Tk and use the assumption in Proposition
5.3. This finishes the proof of this proposition. �

It remains to check whether the assumption of Proposition 5.3 is fulfilled. We
restrict now to g = 3 and q = 4. Then admissible decompositions exist, cf. Propo-
sition 4.1. We have to differ between three cases.

The case of a genus-zero boundary component. This case is trivial, since in
this case the spaces JT all are of dimension 1.

The case of a genus-two boundary component. In this case T =m is an integer.
The statement is that

J1(τ0)
⊗m −→ Jm(τ0)

is surjective. Since J1(τ0) is the space of sections of an ample line bundle of the
form L4, the statement follows from the well-known result that

H0(L)⊗m −→H0(L⊗m)

is surjective for m≥ 3.

The case of a genus-one boundary component. The elements of JT (τ0) can be
identified with the sections of a line bundle on E×E, where E =C/(Z+Zτ0). In
the case T =E1 =

(
1 0
0 0

)
the space is spanned by the 4 theta series

∑

n∈Z
exp4πi

{
τ(n+a1/4)2 +2(n+a1/4)z1

}
.

They can be considered as sections of a line bundle L on the first component E of
E×E, i.e., the line bundle on E×E is the inverse image L1 := p∗L with respect
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to the first projection. Similarly in the case T = E2 =
(

0 0
0 1

)
we have to consider

the line bundle L2 := q∗L where q is the projection on the second E. Finally in the
case T = E3 =

(
1 1
1 1

)
the line bundle L3 = (p+ q)∗L has to be considered.

We have to consider optimal decompositions of 2×2-matrices. We can restrict
to reduced matrices, then the optimal decompositions are of the form

T = aE1 + bE2 + cE3.

What we have to show is that the multiplication map

H0(L1)
⊗a⊗CH

0(L2)
⊗b⊗CH

0(L3)
⊗c −→H0(L⊗a

1 L⊗b
2 L⊗c

3 )

is surjective. This is the problem for the cartesian square of an elliptic curve. All
what we must know is that L is a line bundle (= divisor class) on E of degree 4.
But this follows from dimH0(L) = 4. Any divisor of degree 4 is equivalent to a
translate of 4[0]. Since we are free to change the origin we can assume that L is
the line bundle associated to the divisor 4[0]. So we can reformulate the problem
as follows.

5.4. PROPOSITION. We denote by L(a,b,c) the space of all meromorphic func-
tions on E×E which are regular or have poles of order ≤ a on {0}×E, of order
≤ b on E×{0} and of order ≤ c on the diagonal. The multiplication map

L(4,0,0)⊗a⊗CL(0,4,0)
⊗b⊗CL(0,0,4)

⊗c −→ L(4a,4b,4c)

is surjective.

We shall prove this proposition in the next section. It will imply our main result.

5.5. MAIN-THEOREM. In the case g = 3 the theta functions fa, a ∈
(Z/4Z)6/±, define a biholomorphic embedding of the Satake compactification
H3/Γ3[4,8] into the projective space.

As we mentioned already one can replace the fa by the standard 36 theta con-
stants of first kind.

6. Cartesian square of an elliptic curve. In this section we give the proof
of Proposition 5.4 (and hence of Main-Theorem 5.5). We consider the elliptic curve
E = C(Z+Zτ), Imτ > 0. We will construct the spaces L(a,b,c) (see Proposition
5.4) by means of the Weierstrass ℘-function. We will use the basic fact that ev-
ery elliptic function (meromorphic function on E) that is holomorphic outside the
origin can be written as unique linear combination of the (higher) derivatives of ℘
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including ℘ and the constant function 1. We consider the list

1, ℘(z), ℘′(z), ℘′′(z),

1, ℘(w), ℘′(w), ℘′′(w),

1, ℘(z−w), ℘′(z−w), ℘′′(z−w).

If we take from the first line a elements, from the second line b elements and from
the third line c elements and multiply them, we get an element of L(4a,4b,4c). We
denote the subspace of L(4a,4b,4c) generated by them by M(4a,4b,4c). So the
statement of Proposition 5.4 is L(4a,4b,4c) =M(4a,4b,4c). We notice that

℘(k)(z) ∈M(4a,0,0), if k+2 ≤ 4a.

6.1. LEMMA. The function

ϕ(z,w) =
℘′(z)+℘′(w)

℘(z)−℘(w)

has poles of first order at the 3 special divisors (E×{0}, {0}×E and diagonal)
and has no other pole. Hence it is contained in L(1,1,1).

Proof. This follows form the addition formula for the ℘-function,

ϕ(z,w)2 = ℘(z−w)+℘(z)+℘(w). �

We consider the matrix group G generated by the matrices
(

0 1
1 0

)
,

(
1 −1
0 −1

)
.

It is isomorphic to S3. It acts on E×E through
(
z
w

)
�−→ g

(
z
w

)

from the left and hence on functions in z,w from the right. It permutes the three
special divisors.

6.2. LEMMA. The function ϕ(z,w) has the property

−ϕ(z,w) = ϕ(−z,−w).

Moreover, it is invariant under G up to the character ε(g) = det(g). The formula

lim
z→0

zϕ(z,w) =−2

holds.
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We want to exhibit all functions from the space M(4,4,4) that have the same
transformation formula as ϕ. The 64 generating functions all are symmetric or
skew symmetric under (z,w) �→ (−z,−w). We are only interested in the skew
symmetric ones. The group G acts on them. A system of representatives is given
by the functions

℘′(z), ℘(z)℘′(w), ℘′′(z)℘′(w), ℘(z)℘(w)℘′(z−w),

℘(z)℘′′(w)℘′(z−w), ℘′′(z)℘′′(w)℘′(z−w), ℘′(z)℘′(w)℘′(z−w).

We symmetrize them with respect to the Character ε.

f1 = ℘′(z)−℘′(w)−℘′(z−w),

f2 = ℘(z)℘′(w)−℘′(z)℘(w)+℘′(w)℘(z−w)+℘(w)℘′(z−w)

−℘′(z)℘(z−w)+℘(z)℘′(z−w),

f3 = ℘′′(z)℘′(w)−℘′(z)℘′′(w)+℘′(w)℘′′(z−w)+℘′′(w)℘′(z−w)

−℘′(z)℘′′(z−w)+℘′′(z)℘′(z−w),

f4 = ℘(z)℘(w)℘′(z−w)−℘′(z)℘(w)℘(z−w)+℘(z)℘′(w)℘(z−w),

f5 = ℘(z)℘′′(w)℘′(z−w)+℘′′(z)℘(w)℘′(z−w)−℘′(z)℘′′(w)℘(z−w)

−℘′(z)℘(w)℘′′(z−w)+℘′′(z)℘′(w)℘(z−w)+℘(z)℘′(w)℘′′(z−w),

f6 = ℘′′(z)℘′′(w)℘′(z−w)−℘′(z)℘′′(w)℘′′(z−w)+℘′′(z)℘′(w)℘′′(z−w),

f7 = ℘′(z)℘′(w)℘′(z−w).

We have to investigate the pole behavior of these functions. The only poles are
along the three special divisors. The symmetry properties show that the behavior at
each of the three special divisors is the same. Hence it is sufficient to concentrate
on the divisor z = 0. We compute some Laurent coefficients for fixed w = a �= 0.
What we need is

℘(z) =
1
z2 +O(1), ℘′(z) =− 2

z3 +O(1), ℘′′(z) =
6
z4 +O(1).

Here O(1) stands for a bounded function in a small neighborhood of the origin. We
also need

℘(z−a) = ℘(a)−℘′(a)z+
℘′′(a)

2
z2 − ℘(3)(a)

6
z3 + · · · ,

℘′(z−a) =−℘′(a)+℘′′(a)z− ℘(3)(a)

2
z2 +

℘(4)

6
z3 + · · · ,

℘′′(z−a) = ℘′′(a)−℘(3)(a)z+
℘(4)

2
z2 − ℘(5)

6
z3 + · · · .

By means of these formualae we are able to compute the Laurent coefficients. The
differential equation of the ℘-function allows the express the higher derivatives of
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℘ explicitly in terms of ℘ and ℘′. Now a somewhat tedious but straightforward
computation gives the following result.

6.3. PROPOSITION. The functions

F1 = f3 −30f4 − (5/2)g2f1

F2 = 2f5 −9f7 −5g2f2 +15f1

have poles of order 1 along the three divisors Di. They are contained in L(1,1,1)∩
M(4,4,4). We have

lim
z→0

zF1(z,w) =−36g2℘(w)−54g3,

lim
z→0

zF2(z,w) = 108g3℘(w)+6g2
2 .

The functions 1, F1 and F2 are linearly independent. They span the space L(1,1,1).

In particular, ϕ must be a linear combination of F1 and F2. Here is it.

6.4. PROPOSITION. We have

3(g3
2 −27g2

3)ϕ=−g2F2 +3g3F1.

Notice that the discriminant g3
2 −27g2

3 is different from 0.

6.5. PROPOSITION. The spaces L(4a,4b,4c) and M(4a,4b,4c) agree.

Proof. Let f(z,w) ∈ L(4a,4b,4c). We assume that the order of f along one
of the three components is zero. Without loss of generality we can assume that the
order at the diagonal is zero. Then, for fixed w �= 0 the function z �→ f(z,w) has
only a pole at z= 0. Hence it can be written as linear combination in the derivatives
of the ℘-function (including the constant function),

f(z,w) = a0 +
∑

ν≥0

aν℘
(ν)(z).

The coefficients aν are elliptic functions in w with poles only at w= 0. Hence they
can be expressed by derivatives of ℘(w) (including the function constant 1 and
℘(w)).

Now f has no poles along the three special divisors, so we can assume that
its order along z = 0 is m > 0. We first treat the case where m > 1. Again we
fix w �= 0. Then f(z,w) has a pole of order > 1 at z = 0 (and may be a pole
at z = w). We subtract from f(z,w) a constant multiple of ℘(m−2)(z) such that
the difference f(z,w)− a℘(k−2)(z) has smaller pole order at z = 0. Again the
coefficient a = a(w) is an elliptic function with poles only at w = 0. It can be
expressed by derivatives of ℘(w).
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In the remaining case m= 1 we consider for fixed w the difference

f(z,w)−aϕ(z,w).

The pole at z = 0 can be cancelled. The coefficient a is an elliptic function in w

with no poles outside w = 0. Hence it can be expressed by derivatives of ℘(w).
This finishes the proof of Proposition 5.4 and hence of our main result. �

We mention that in Proposition 6.5 the factor 4 is essential. For example
L(1,1,1) is not contained in M(3,3,3).
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