The aim of this work is characterizing the class of LPV systems that admit steady-state trajectories depending exclusively on the scheduling parameter. In particular, it will be shown that only certain parameter dependent steady-state profiles are admissible and can be reached by means of a suitable control input. Furthermore, the asymptotic stability and the stabilization of such steady-states is investigated using Lyapunov-based techniques. Extensive numerical simulations illustrate and corroborate the theoretical results. (C) 2019 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

Reachability and stabilization of scheduled steady-states for LPV single-input systems / Corona, D.; Cristofaro, A.; Rotondo, D.. - In: JOURNAL OF THE FRANKLIN INSTITUTE. - ISSN 0016-0032. - 356:8(2019), pp. 4478-4495. [10.1016/j.jfranklin.2019.04.007]

Reachability and stabilization of scheduled steady-states for LPV single-input systems

Cristofaro A.
;
2019

Abstract

The aim of this work is characterizing the class of LPV systems that admit steady-state trajectories depending exclusively on the scheduling parameter. In particular, it will be shown that only certain parameter dependent steady-state profiles are admissible and can be reached by means of a suitable control input. Furthermore, the asymptotic stability and the stabilization of such steady-states is investigated using Lyapunov-based techniques. Extensive numerical simulations illustrate and corroborate the theoretical results. (C) 2019 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
2019
Linear matrix inequalities; Controllers; Lyapunov functions
01 Pubblicazione su rivista::01a Articolo in rivista
Reachability and stabilization of scheduled steady-states for LPV single-input systems / Corona, D.; Cristofaro, A.; Rotondo, D.. - In: JOURNAL OF THE FRANKLIN INSTITUTE. - ISSN 0016-0032. - 356:8(2019), pp. 4478-4495. [10.1016/j.jfranklin.2019.04.007]
File allegati a questo prodotto
File Dimensione Formato  
Corona_Reachability-and-stabilization_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1331640
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact