This work is devoted to stabilization of unstable continuous-time linear systems in the presence of saturating actuators. We show that, if the state matrix has real eigenvalues, it is possible to construct a linear feedback such that the set of values satysfying the saturation constraint is an invariant set for the closed-loop system. Moreover, once the initial datum is arbitrarily fixed, we can ensure asymptotic stabilization of the system splitting the control variable in a predefined number of saturating components. A design technique for a controller having such invariance property is also given for discrete linear systems.
Asymptotic Stabilization of Planar Unstable Linear Systems by a finite number of Saturating Actuators / Corradini, Maria Letizia; Cristofaro, Andrea; Giannoni, Fabio. - (2009), pp. 508-513. (Intervento presentato al convegno 10th European Control Conference, ECC 2009 tenutosi a Budapest; Hungary) [10.23919/ECC.2009.7074453].
Asymptotic Stabilization of Planar Unstable Linear Systems by a finite number of Saturating Actuators
CRISTOFARO, ANDREA
;
2009
Abstract
This work is devoted to stabilization of unstable continuous-time linear systems in the presence of saturating actuators. We show that, if the state matrix has real eigenvalues, it is possible to construct a linear feedback such that the set of values satysfying the saturation constraint is an invariant set for the closed-loop system. Moreover, once the initial datum is arbitrarily fixed, we can ensure asymptotic stabilization of the system splitting the control variable in a predefined number of saturating components. A design technique for a controller having such invariance property is also given for discrete linear systems.File | Dimensione | Formato | |
---|---|---|---|
Corradini_Asymptotic_2009.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
214.23 kB
Formato
Adobe PDF
|
214.23 kB | Adobe PDF | Contatta l'autore |
VE_2009_11573-1329817.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
217.25 kB
Formato
Adobe PDF
|
217.25 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.