This paper addresses the problem of multiple model adaptive estimation (MMAE) for discrete-time linear parameter varying (LPV) systems that are affected by parametric uncertainty. The MMAE system relies on a finite number of local observers, each designed using a selected model (SM) from the set of possible plant models. Each local observer is an LPV Kalman filter, obtained as a linear combination of linear time invariant (LTI) Kalman filters. It is shown that if some suitable distinguishability conditions are fulfilled, the MMAE will identify the SM corresponding to the local observer with smallest output prediction error energy. The convergence of the unknown parameter estimation, and its relation with the varying parameters, are discussed. Simulation results illustrate the application of the proposed method.

A multiple model adaptive architecture for the state estimation in discrete-time uncertain LPV systems / Rotondo, Damiano; Hassani, Vahid; Cristofaro, Andrea. - (2017), pp. 2393-2398. (Intervento presentato al convegno 2017 American Control Conference, ACC 2017 tenutosi a Seattle, WA; United States) [10.23919/ACC.2017.7963311].

A multiple model adaptive architecture for the state estimation in discrete-time uncertain LPV systems

Cristofaro Andrea
2017

Abstract

This paper addresses the problem of multiple model adaptive estimation (MMAE) for discrete-time linear parameter varying (LPV) systems that are affected by parametric uncertainty. The MMAE system relies on a finite number of local observers, each designed using a selected model (SM) from the set of possible plant models. Each local observer is an LPV Kalman filter, obtained as a linear combination of linear time invariant (LTI) Kalman filters. It is shown that if some suitable distinguishability conditions are fulfilled, the MMAE will identify the SM corresponding to the local observer with smallest output prediction error energy. The convergence of the unknown parameter estimation, and its relation with the varying parameters, are discussed. Simulation results illustrate the application of the proposed method.
2017
2017 American Control Conference, ACC 2017
Linear matrix inequalities; Controllers; Lyapunov functions
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
A multiple model adaptive architecture for the state estimation in discrete-time uncertain LPV systems / Rotondo, Damiano; Hassani, Vahid; Cristofaro, Andrea. - (2017), pp. 2393-2398. (Intervento presentato al convegno 2017 American Control Conference, ACC 2017 tenutosi a Seattle, WA; United States) [10.23919/ACC.2017.7963311].
File allegati a questo prodotto
File Dimensione Formato  
Rotondo_A-multiple-model_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 227.37 kB
Formato Adobe PDF
227.37 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1329801
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact