It is proposed to estimate wind velocity, Angle-Of-Attack (AOA) and Sideslip Angle (SSA) of a fixed-wing Unmanned Aerial Vehicle (UAV) using only kinematic relationships with a Kalman Filter (KF), avoiding the need to know aerodynamic models or other aircraft parameters. Assuming that measurements of airspeed and attitude of an UAV are available as inputs, a linear 4th order time-varying model of the UAV's longitudinal speed and the 3-D wind velocity is used to design a Kalman-filter driven by a GNSS velocity measurement airspeed sensor. An observability analysis shows that the states can be estimated along with an airspeed sensor calibration factor provided that the flight maneuvers are persistently exciting, i.e. the aircraft changes attitude. The theoretical analysis of the KF shows that global exponential stability of the estimation error is achieved under these conditions. The method is tested using experimental data from three different UAVs, using their legacy autopilot to provide basic estimates of UAV velocity and attitude. The results show that convergent estimates are achieved with typical flight patterns indicating that excitation resulting from the environment and normal flight operation is sufficient. Wind velocity estimates correlate well with observed winds at the ground. The validation of AOA and SSA estimates is preliminary, but indicate some degree of correlation between the AOA estimate and vertical accelerometer measurements, as would be expected since lift force can be modeled as a linear function of AOA in normal flight.

On estimation of wind velocity, angle-of-attack and sideslip angle of small UAVs using standard sensors / Johansen Tor, A.; Cristofaro, Andrea; Sørensen, Kim; Hansen Jakob, M.; Fossen Thor, I.. - (2015), pp. 510-519. (Intervento presentato al convegno 2015 International Conference on Unmanned Aircraft Systems, ICUAS 2015 tenutosi a Denver; United States) [10.1109/ICUAS.2015.7152330].

On estimation of wind velocity, angle-of-attack and sideslip angle of small UAVs using standard sensors

Cristofaro Andrea
;
2015

Abstract

It is proposed to estimate wind velocity, Angle-Of-Attack (AOA) and Sideslip Angle (SSA) of a fixed-wing Unmanned Aerial Vehicle (UAV) using only kinematic relationships with a Kalman Filter (KF), avoiding the need to know aerodynamic models or other aircraft parameters. Assuming that measurements of airspeed and attitude of an UAV are available as inputs, a linear 4th order time-varying model of the UAV's longitudinal speed and the 3-D wind velocity is used to design a Kalman-filter driven by a GNSS velocity measurement airspeed sensor. An observability analysis shows that the states can be estimated along with an airspeed sensor calibration factor provided that the flight maneuvers are persistently exciting, i.e. the aircraft changes attitude. The theoretical analysis of the KF shows that global exponential stability of the estimation error is achieved under these conditions. The method is tested using experimental data from three different UAVs, using their legacy autopilot to provide basic estimates of UAV velocity and attitude. The results show that convergent estimates are achieved with typical flight patterns indicating that excitation resulting from the environment and normal flight operation is sufficient. Wind velocity estimates correlate well with observed winds at the ground. The validation of AOA and SSA estimates is preliminary, but indicate some degree of correlation between the AOA estimate and vertical accelerometer measurements, as would be expected since lift force can be modeled as a linear function of AOA in normal flight.
2015
2015 International Conference on Unmanned Aircraft Systems, ICUAS 2015
Unmanned aerial vehicles (UAV); Aircraft; Dynamic soaring
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
On estimation of wind velocity, angle-of-attack and sideslip angle of small UAVs using standard sensors / Johansen Tor, A.; Cristofaro, Andrea; Sørensen, Kim; Hansen Jakob, M.; Fossen Thor, I.. - (2015), pp. 510-519. (Intervento presentato al convegno 2015 International Conference on Unmanned Aircraft Systems, ICUAS 2015 tenutosi a Denver; United States) [10.1109/ICUAS.2015.7152330].
File allegati a questo prodotto
File Dimensione Formato  
Johansen_On-estimation_2015.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 836.71 kB
Formato Adobe PDF
836.71 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1329791
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 118
  • ???jsp.display-item.citation.isi??? 85
social impact