The classical electromagnetic problem represented by a small loop axially parallel to a thin conductive planar shield of infinite extent is addressed in the time domain. The problem is solved analytically through a modified Cagniard-de Hoop approach and numerically through the double inverse Hankel/Fourier transform. Although some approximations are made, the analytical method is the most useful in predicting the main time-domain shielding characteristics.

Time-domain magnetic shielding of a thin conducting screen against a small loop / Araneo, R.; Lovat, G.; Celozzi, S.; Burghignoli, P.. - (2019). (Intervento presentato al convegno 2019 International Applied Computational Electromagnetics Society Symposium in Miami, ACES-Miami 2019 tenutosi a Miami, FL).

Time-domain magnetic shielding of a thin conducting screen against a small loop

Araneo R.;Lovat G.;Celozzi S.;Burghignoli P.
2019

Abstract

The classical electromagnetic problem represented by a small loop axially parallel to a thin conductive planar shield of infinite extent is addressed in the time domain. The problem is solved analytically through a modified Cagniard-de Hoop approach and numerically through the double inverse Hankel/Fourier transform. Although some approximations are made, the analytical method is the most useful in predicting the main time-domain shielding characteristics.
2019
2019 International Applied Computational Electromagnetics Society Symposium in Miami, ACES-Miami 2019
time-domain electromagnetics; electromagnetic shielding; Cagniard-de Hoop method
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Time-domain magnetic shielding of a thin conducting screen against a small loop / Araneo, R.; Lovat, G.; Celozzi, S.; Burghignoli, P.. - (2019). (Intervento presentato al convegno 2019 International Applied Computational Electromagnetics Society Symposium in Miami, ACES-Miami 2019 tenutosi a Miami, FL).
File allegati a questo prodotto
File Dimensione Formato  
Araneo_Time-domain_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 925.8 kB
Formato Adobe PDF
925.8 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1327634
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact