We prove that there is a constant K such that Tseitin formulas for an undirected graph G requires proofs of size 2tw(G)Ω(1/d) in depth-d Frege systems for d < (Formula presented.) where tw(G) is the treewidth of G. This extends Håstad recent lower bound for the grid graph to any graph. Furthermore, we prove tightness of our bound up to a multiplicative constant in the top exponent. Namely, we show that if a Tseitin formula for a graph G has size s, then for all large enough d, it has a depth-d Frege proof of size 2tw(G)O(1/d)poly(s). Through this result we settle the question posed by M. Alekhnovich and A. Razborov of showing that the class of Tseitin formulas is quasi-automatizable for resolution.

Bounded-depth frege complexity of tseitin formulas for all graphs / Galesi, N.; Itsykson, D.; Riazanov, A.; Sofronova, A.. - 138:(2019), pp. 1-15. (Intervento presentato al convegno 44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019 tenutosi a Aachen; Germany) [10.4230/LIPIcs.MFCS.2019.49].

Bounded-depth frege complexity of tseitin formulas for all graphs

Galesi N.
Primo
;
2019

Abstract

We prove that there is a constant K such that Tseitin formulas for an undirected graph G requires proofs of size 2tw(G)Ω(1/d) in depth-d Frege systems for d < (Formula presented.) where tw(G) is the treewidth of G. This extends Håstad recent lower bound for the grid graph to any graph. Furthermore, we prove tightness of our bound up to a multiplicative constant in the top exponent. Namely, we show that if a Tseitin formula for a graph G has size s, then for all large enough d, it has a depth-d Frege proof of size 2tw(G)O(1/d)poly(s). Through this result we settle the question posed by M. Alekhnovich and A. Razborov of showing that the class of Tseitin formulas is quasi-automatizable for resolution.
2019
44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019
AC0-Frege; Treewidth; Tseitin formula
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Bounded-depth frege complexity of tseitin formulas for all graphs / Galesi, N.; Itsykson, D.; Riazanov, A.; Sofronova, A.. - 138:(2019), pp. 1-15. (Intervento presentato al convegno 44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019 tenutosi a Aachen; Germany) [10.4230/LIPIcs.MFCS.2019.49].
File allegati a questo prodotto
File Dimensione Formato  
Galesi_Bounded-depth_2019.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 549.87 kB
Formato Adobe PDF
549.87 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1311217
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact