This paper presents a novel numerical approach to simulate H-plane rectangular-waveguide microwave circuits considering a reduced quasi-2D simulation domain with benefits for computational cost and time. With the aim to evaluate the attenuation of the full height 3D component, we propose a modified expression for the waveguide top/bottom wall conductivity. Numerical 2D simulations are validated against results from full wave 3-D commercial electromagnetic simulator. After a benchmark on a simple straight waveguide model, the method has been successfully applied to an asymmetric un-balanced power splitter, where an accurate power loss prediction is mandatory. Simulation time and memory consumption can be reduced by a factor ten and seven respectively, in comparison with complete 3D geometries. Finally, we show that, also for quasi-2D E-bend waveguide, a case where the translational H-plane symmetry is broken, the error on conductor losses computation is mitigated by our approach since the method remains still valid in a first approximation.
Conductor losses calculation in two-dimensional simulations of H-plane rectangular waveguides / Castorina, G.; Torrisi, G.; Sorbello, G.; Celona, L.; Mostacci, A.. - In: JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS. - ISSN 0920-5071. - 33:8(2019), pp. 981-990. [10.1080/09205071.2019.1583136]
Conductor losses calculation in two-dimensional simulations of H-plane rectangular waveguides
Mostacci A.Ultimo
Supervision
2019
Abstract
This paper presents a novel numerical approach to simulate H-plane rectangular-waveguide microwave circuits considering a reduced quasi-2D simulation domain with benefits for computational cost and time. With the aim to evaluate the attenuation of the full height 3D component, we propose a modified expression for the waveguide top/bottom wall conductivity. Numerical 2D simulations are validated against results from full wave 3-D commercial electromagnetic simulator. After a benchmark on a simple straight waveguide model, the method has been successfully applied to an asymmetric un-balanced power splitter, where an accurate power loss prediction is mandatory. Simulation time and memory consumption can be reduced by a factor ten and seven respectively, in comparison with complete 3D geometries. Finally, we show that, also for quasi-2D E-bend waveguide, a case where the translational H-plane symmetry is broken, the error on conductor losses computation is mitigated by our approach since the method remains still valid in a first approximation.File | Dimensione | Formato | |
---|---|---|---|
Conductor losses calculation in two dimensional simulations of H plane rectangular waveguides (2).pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
1.68 MB
Formato
Adobe PDF
|
1.68 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.