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ABSTRACT
This paper presents a novel numerical approach to simulate H-plane
rectangular-waveguide microwave circuits considering a reduced
quasi-2D simulation domain with benefits for computational cost
and time. With the aim to evaluate the attenuation of the full height
3D component, we propose a modified expression for the waveg-
uide top/bottom wall conductivity. Numerical 2D simulations are
validated against results from full wave 3-D commercial electromag-
netic simulator. After a benchmark on a simple straight waveguide
model, the method has been successfully applied to an asymmetric
un-balanced power splitter, where an accurate power loss predic-
tion is mandatory. Simulation time and memory consumption can
be reduced by a factor ten and seven respectively, in comparison
with complete 3Dgeometries. Finally,we show that, also for quasi-2D
E-bend waveguide, a case where the translational H-plane symme-
try is broken, the error on conductor losses computation is miti-
gated by our approach since the method remains still valid in a first
approximation.

ARTICLE HISTORY
Received 17 July 2018
Accepted 10 February 2019

KEYWORDS
H-plane waveguide;
numerical simulation; power
divider; attenuation;
conductor losses;
conductivity; waveguide
components; rectangular
waveguides

1. Introduction andmotivation

Waveguide-based components have been widely investigated and used because of their
low insertion loss, wide bandwidth and high-power capability [1].

One approach for the study of waveguide components is the field-theoretical analysis
of the whole component by general methods such as finite difference time (FDTD) [2] and
frequency domain (FDFD) [3] or finite element method (FEM) [4]. Such general approaches
remove any restriction to the shape and symmetry of the studied components. However,
full wave simulations are time-consuming and computationally demanding. If we restrict
the study to arbitrary H-plane components of height b, a number of efficientmethods have
been proposed for lossless, homogeneous, isotropic, non-dispersive medium [5] that can
be extended to lossy components by using a perturbation approach [6].

As a general rule, oneway to reduce the simulation time is to consider a reduced compu-
tational domain taking advantage of symmetry such as translational/rotational invariance,
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periodicity or even more complex roto-translational periodic symmetry [7]. The design of
rectangular waveguide components is completely 2D only if the layout of the waveguide
branching network lays entirely in the H-plane. It is well known that H-planar components
maintain the matching properties thanks to the translational field invariance in the direc-
tion of the electric fields. This circumstance can be exploited to make faster 2D numerical
simulations as well as in application where the free parameter height b of the device can
be, theoretically, arbitrarily increased to accommodate higher power [8] or reduced to sat-
isfy space constraint as in [9]. Moreover, planar devices can be easily fabricated in planar
technologies or from twomonolithic pieces [10].

However, a simple two-dimensional model, or a reduced height model would not allow
in principle a correct power loss calculation which depends on the height of the guid-
ing structure. In this letter, we present an approach, based on the surface impedance loss
model, to correct the loss per unit length in 2D computer-aided design of planar compo-
nents such as asymmetric H-plane power splitter [11] where accurate power loss prediction
is mandatory. Our approach can be easily extended to any H-plane component uniform in
the transverse direction y, even complex devices such as substrate integrated waveguides
(SIWs) [12].

Since the correction factor we introduced is analytically derived and demonstrated,
the method is general and valid also for lossy filling dielectric [13] which can be also
inhomogeneous if the fillingdielectric constantdoesnotdependon y, i.e. ε(x, y, z) = ε(x, z).

Our innovative method allows fast and accurate simulation of planar waveguide com-
ponents with a 2Dmodel, thus leading to a significant reduction of computational require-
ments. The importance of this reducedmodel is clearly revealed in a large designwhere the
method allows a significant speed-up. The technique is of general applicability since this
can be used in commercially available microwave CAD, and it is of great interest in many
time-consuming optimization of complex H-plane y-invariant components including SIW
waveguides and structures with lossy filling dielectric.

CAD-assisted design and optimization of microwave devices and systems, especially
where losses are of primary concern, could benefit from the method. Appropriate opti-
mization and fine tuning can be easily carried out onmany devices including high average-
power microwave components, high current particle accelerators which are emerging as
critical tools for science and applications [14], planar transmission lines and waveguide
devices for instance filters, diplexers, low-loss antenna feeders, delay lines, and phase
shifters [15,16]. In particular, loss evaluation ismandatory in specific high-powermillimetre-
wave applications such as electron cyclotron heating/current drive for fusion plasmas
[17].

2. Waveguide loss formulation

The attenuation is the ratio of thepower density dissipatedper unit length, Pd, to thepropa-
gating power P and can be analytically calculated by the power lossmethod [1, p.82 (2.96)],
[18, p.60], [19]:

α = Pd
2P

(1)
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where

P = 1
2
Re
∫
S

�E × �H∗ · �uz dS (2)

and

Pd = 1
2

√
ωμc

2σ

∮
L≡∂S

�Hτ · �H∗
τ dL (3)

where Hτ is the magnetic field component tangent to the conductor surfaces, ω is the
angular frequency, μc the waveguide walls magnetic permeability, σ the waveguide walls
conductivity, S the waveguide section and L ≡ ∂S is the waveguide contour.

If we consider a rectangular waveguide with cross section a × b, the conductor power
loss on the contour L ≡ 2a + 2b can be separated in the sum Pd = Pda + Pdb, where

Pda = 1
2

√
ωμc

2σ

∫
2a

�Hτ · �H∗
τ dL

Pdb = 1
2

√
ωμc

2σ

∫
2b

�Hτ · �H∗
τ dL (4)

with Pda the loss on top/bottom sides and Pdb the one on waveguide sidewalls of height b.
The electromagnetic field for good conductor is well approximated by the solution in a

PEC rectangular waveguide. For the planar circuit supporting only the fundamental mode
TE10 (and eventually higher TEp0 modes) in principle all the simulations are independent
of the height b thanks to the translational symmetry in the direction of the electric fields
(below thedirectionof y) since the field iswell approximatedby theTEp0 modebelow [1,18]:

�EtTEp0 = �etTEp0 e−jβzz

�HtTEp0 = βz

ωμ
�htTEp0 e−jβzz

HzTEp0 = k2t
jωμ

cos
pπx

a
e−jβzz (5)

where the non-zero �etTEp0 and �htTEp0 components are

eyTEp0 = −hxTEp0

hxTEp0 = pπ

a
sin

pπx

a
(6)

with k2t = (pπ/a)2 andβ2
z = ω2εμ − k2t . It is clear that all fields in (5)–(6) are y-invariant and

independent of the height b of the waveguide/H-planar device.
Numerical simulations of planar waveguide device can take advantage of this property

to greatly reduce the required computational effort.
A model with reduced height does not introduce any approximation if PEC boundaries

are imposed. However, if a finite conductivity boundary condition is taken into account, the
calculated loss are overestimated because the attenuation, α, increases as b decreases.
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Figure 1. Full height and reduced b′-height models.

It is possible to restore the correct attenuation by introducing a fictitious conductivity σ ′
for the top/bottom a-wide side of the waveguide:

σ ′ = CF · σ =
(
b

b′

)2

· σ (7)

where the correction factor CF = (b/b′)2, introduced, is given by the ratio between the
initial 3D height b and the reduced one b′ of the quasi-2D model.

Thanks to the correction factor on top/bottomwaveguidewalls of the reduced b′-height
model, now all terms in (1), P, Pda and Pdb, scale in the same manner with b′ restoring the
correct value of α (Figure 1) .

The correction introduced above is limited to H-plane devices supporting TEp0 modes.
However, as far as the waveguide height b is kept low, higher TEpq with q �= 0 are not
supported by the structure. Usually standard waveguide devices fulfil this requirement.

3. Numerical results

The simulations carried out rely on the surface impedance concept for both the full wave
simulation and the reduced 2D model. This approximation is very well fulfilled for metals
up to optical wavelengths. The commercial code Ansys HFSS has been used for the numer-
ical analysis and validation. Simulations have been performed on a workstation equipped
with a Xeon E5-1630 v4 3.70GHz CPU and 128GB RAM. The method above discussed
has been firstly benchmarked with a very simple geometry: a straight waveguide with
the standard WR90 dimension. After this first preliminary test, an asymmetric splitter with
1/3 power splitting ratio has been designed. Finally, the method has also been tested for
an E-plane device. For all the considered devices the simulations with standard waveg-
uide height, highlighted in bold in the tables of results, are used as reference value for
both the S-parameters, memory footprint and computation time. When CF=1, it means
that no correction factor has been used for the simulation and the scattering parameters
evaluation.

3.1. Straight waveguide

The model has been parametrized respect to the waveguide height b′ ranging from the
standardWR90heightb=10.16mmtob′ as reported in the first columnof Table 1. For each
simulation, the value of the S21 parameter at 10 GHz frequency has been computed. The
maximum length of the mesh elements is ∼ λ/6. An adaptive solution with three passes
and an interpolating frequency sweep has been used for the simulation. The waveguide
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Table 1. Results of the parametric sweep simulations for the WR90 waveguide.

b′ (mm) CF σ ′ Mesh cells Mem. (GB) Time (s) |S21|
b 1 PEC 123174 34.24 680 1
b 1 5.80e7 123177 29.37 1249 0.988
b/2 1 5.80e7 62779 15.17 423 0.979

4 2.32e8 62775 15.16 418 0.988
b/4 1 5.80e7 31787 7.86 184 0.961

16 9.28e8 31752 7.85 181 0.988
b/8 1 5.80e7 25540 6.45 154 0.923

64 3.71e9 25540 6.45 151 0.988

length is 1m. Results, also in terms of computation time and memory usage, are reported
in Table 1.

The time required for the reference simulation with a finite conductivity is 1249 s. This
value can be reduced by a factor three when the height of the waveguide is halved, and
a correction factor of CF=4 is employed. When a quarter value of the height is used the
time required for simulation is reduced by ∼6.5 factor. Further reductions of the height
dimension do not entail to a substantial speed-up of the simulation. However, for larger
geometries, the b′ dimension could be further decreasedwith computational timebenefits.
Thanks to the correction factor, the evaluated |S21| is equal to the b′ = b reference simula-
tion also for the case b′ = b/8 = 1.27mmwhere the initial evaluated |S21| (without CF) has
an appreciable error respect to the b′ = b reference simulation Also the memory require-
ments are greatly reduced when this method is used: for the full 3D-simulation more than
34GBof RAMare requiredwhile for thequasi-2D simulation,withb′ = b/8 = 1.27mm,only
6.5 GB of RAM are needed.

If the operating frequency is close to cut-off frequency fc, the waveguide loss becomes
very high. However, the presented reducedmodel is still valid since it relies on a local prop-
erty based on the surface impedance concept. Further insight is given by an analytical
derivation and numerical experiments are shown in Appendix.

3.2. Unbalanced power splitter

This microwave device (see Figure 2) is designed to obtain a power ratio of one-third
between two ports arrangedwith a 90◦ degree angle. From the |S21| and |S31| values of the
preliminary reference simulation with a standard dimension of the waveguide (see Table 2,
first row), we can verify that the power division obtained is satisfactory (|S21|2 = 0.86732 =
0.752 ≈ 0.75 and |S31|2 = 0.244 ≈ 0.25).

Figure 2. CAD drawing of the H-plane splitter designed to obtain an un-balanced power division.
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Table 2. Results for the asymmetric power splitter at 11.424 GHz.

b′ (mm) CF σ ′ Mem. (GB) Time (s) |S21| |S31|
b 1 5.80e7 10.35 545 0.8673 0.4939
b/32 1 5.80e7 1.59 54 0.8382 0.5204
b/32 1024 5.94e10 1.50 53 0.8673 0.4939

Table 3. Results for the waveguide with a bend in the E-plane at 11.424 GHz.

b′ (mm) CF σ ′ Mem. (GB) Time (s) |S11| |S21|
b 1 5.80e7 48.85 946 2.7e−3 0.9878
b/32 1 5.80e7 3.99 125 5.5e−7 0.7372
b/32 1024 5.94e10 3.99 124 6.5e−7 0.9878

The same device has been simulated with a reduced height without (CF=1) and with
the correction factor (CF=1024) on conductivity. In both cases, the time required has been
reduced by an order of magnitude and the memory employed by a factor of 7. Thanks to
the correction factor, the same value of the reference simulation for the S-parameters is
again obtained, therefore successfully validating the method proposed here.

3.3. Non-planar devices

The electric field of the TEp0 modes is modified when they propagate inside an E-bend. In
this case, Equations (6) are nomore strictly valid nor y invariant. However, if the bend radius
R is at least some wavelength long, the method here proposed can be used with a limited
error. A sufficiently large radius of curvature (greater than 1.5 wavelength) is also needed
to avoid a large insertion loss of the bend. In almost all designs of microwave waveguide
devices, this condition is naturally satisfied. An E-bend with a radius of 40mm (∼1.5λ) has
been simulated at the working frequency of 11.424GHz. The results of the simulations are
reported in Table 3.

As expected, the obtained results are not in agreement with the 3D-full wave reference
simulation. While the |S21| can be correctly estimated, the |S11| is greatly underestimated.
However, the proposed method can be used for a rough preliminary estimation.

4. Conclusions

Amethod to drastically reduce the computational effort when simulating H-planar waveg-
uide device has been presented. This method exploits the field configuration of the TEp0
modes which are independent respect to the height of the waveguide. A full 3D simulation
can be reduced to a quasi-2D simulation where the conduction losses can be evaluated
by introducing a fictitious conductivity which restores the exact attenuation constant. This
general and accurate approach can be successfully used in the design of power divider,
directional coupler and power distribution network. Respect to the cases here analysed,
the simulation time has been reduced by an order of magnitude and the memory usage
by a factor of about seven. Also in the case of a waveguide with E-bends, i.e. non-H-planar
devices, the error on the transmitted power is negligible compared to full 3D simulation.
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Such a drastic time reduction represents a great advantage for a large design as well as for
automated design and time-consuming optimization.
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Appendix

We showhereinafter that the reducedmodel is valid also close to cut-off, i.e. in aworking point where
it is well known that the standard variational power loss method fails [1, p.82], [20].

For a TEp0 mode from (1) we have

α = Pd
2P

= Pda + Pdb
2P

(A1)

where (4)

Pda = 1
2

√
ωμc

2σ

∫
2a

|�Hτ |2 dL = 1
2

√
ωμc

2σ
2
∫ a

0
(|Hz|2︸︷︷︸
trasv.

+ |Hx|2︸︷︷︸
longit.

)dx,

Pdb = 1
2

√
ωμc

2σ

∫
2b

|�Hτ |2 dL = 1
2

√
ωμc

2σ
2
∫ b

0
(|Hz|2︸︷︷︸
trasv.

+0)dy, (A2)

i.e. in the presence of a TE mode, we have longitudinal and transverse currents both giving contribu-
tions to the total attenuation

α = αtrasv. + αlongit. (A3)

Recalling the expression of fields (5) and (6), k2t = (pπ/a)2 and βz = ω
√

εμ
√
1 − (fc/f )2 we have

2
∫ a

0

(|Hz|2 + |Hx|2
)
dx =2

∫ a

0

(∣∣∣∣ k2tωμ
cos

pπx

a

∣∣∣∣
2

+
∣∣∣∣ βz

ωμ

pπ

a
sin

pπx

a

∣∣∣∣2
)
dx=a

(∣∣∣∣ k2tωμ

∣∣∣∣
2

+
∣∣∣∣ βz

ωμ
kt

∣∣∣∣2
)

2
∫ b

0

(|Hz|2 + 0
)
dy =2

∫ b

0

(∣∣∣∣ k2tωμ
cos

pπ0
a

∣∣∣∣
2

+ 0

)
dy=2b

∣∣∣∣ k2tωμ

∣∣∣∣
2

(A4)

and (2):

P = 1
2
Re
∫
S

�E × �H∗ · �uz dS = 1
2

∫ a

0

∫ b

0

∣∣∣∣ βz

ωμ

∣∣∣∣ ∣∣∣pπa sin
pπx

a

∣∣∣2 dx dy = 1
2

∣∣∣∣ βz

ωμ

∣∣∣∣ k2t ab2 ; (A5)

substituting in (A1) we have

α = Pda + Pdb
2Pd

= 1
2

√
ωμc

2σ
a(k2t + β2

z ) + 2bk2t
ωμ βz

ab
2

= 1
2

√
ωμc

2σ
a(ω2εμ) + 2b(ω2

c εμ)

ωμ ω
√

εμ

√
1 − fc

f
ab
2

(A6)

and

α = α(f ) =
√

π fμc

σ

√
ε

μ

1
b + 2

a

(
fc
f

)2
√
1 − fc

f

. (A7)

In Figure A1, we report results for full, reduced and the power loss perturbation method (A7) (the
latter method is valid for f > fc). As it can clearly be seen in Figure A1, the attenuation constant, α,
computed for full height and reducedmodels are in a very good agreement, below and above cutoff
as well as when the frequency approaches fc and the power loss method (A7) fails. In the simulation
carried out to generate Figure A1, we used a discrete sweep with the ratio b/b′ = 4 (and CF= 16)
obtaining, also in this very simple configuration, a speedup factor 2.14 and less than one-third of the
mesh element.
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Figure A1. Attenuation evaluated with full and reduced model. The variational semi-analytical formu-
lation (A7) is valid above cut-off and fails close to cut-off. (a) Linear and (b) semilog y-axis.
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