For the cosmic microwave background, the increase of the sensitivity of present superconducting TES Spiderweb Bolometers can be done coupling them to a large set of modes of the EM radiation inside the cavity. This will require a proper shaping of the horn-cavity assembly for the focal plane of the microwave telescope and the use of large area bolometers. Large area spiderweb bolometers of 8 mm diameter and a mesh size of 250 μm are fabricated in order to couple with approximately the first 20 modes of the cavity at about 140 GHz. These bolometers are fabricated with micro machining techniques from silicon wafer covered with SiO2-Si3N4 CVD thick films, 0.3 μm and 1 μm respectively. The sensor is a Ti/Au/Ti 3 layer TES sensor with Tc tuned in the 330-380 mK and 2 mK transition width. The TES is electronically coupled to the EM gold absorber that is grown on to the spiderweb mesh in order to sense the temperature of the electron gas heated by the EM radiation. The gold absorber mesh has 5 um beam size over a Si3N4 10 μm beam size supporting mesh. The Si3N4 mesh is then fully suspended by means of DRIE back etching of the Si substrate. Here we present the first results of these large area bolometers. © Published under licence by IOP Publishing Ltd.
Large area superconducting TES spiderweb bolometer for multi-mode cavity microwave detect / Biasotti, M.; Bagliani, D.; Corsini, D.; De Bernardis, P.; Gatti, F.; Gualtieri, R.; Lamagna, L.; Masi, S.; Pizzigoni, G.; Schillaci, A.. - In: JOURNAL OF PHYSICS. CONFERENCE SERIES. - ISSN 1742-6588. - 507:4(2014), p. 042004. (Intervento presentato al convegno 11th European Conference on Applied Superconductivity, EUCAS 2013 tenutosi a Genoa, ita) [10.1088/1742-6596/507/4/042004].
Large area superconducting TES spiderweb bolometer for multi-mode cavity microwave detect
De Bernardis P.;Gualtieri R.;Lamagna L.;Masi S.;Schillaci A.
2014
Abstract
For the cosmic microwave background, the increase of the sensitivity of present superconducting TES Spiderweb Bolometers can be done coupling them to a large set of modes of the EM radiation inside the cavity. This will require a proper shaping of the horn-cavity assembly for the focal plane of the microwave telescope and the use of large area bolometers. Large area spiderweb bolometers of 8 mm diameter and a mesh size of 250 μm are fabricated in order to couple with approximately the first 20 modes of the cavity at about 140 GHz. These bolometers are fabricated with micro machining techniques from silicon wafer covered with SiO2-Si3N4 CVD thick films, 0.3 μm and 1 μm respectively. The sensor is a Ti/Au/Ti 3 layer TES sensor with Tc tuned in the 330-380 mK and 2 mK transition width. The TES is electronically coupled to the EM gold absorber that is grown on to the spiderweb mesh in order to sense the temperature of the electron gas heated by the EM radiation. The gold absorber mesh has 5 um beam size over a Si3N4 10 μm beam size supporting mesh. The Si3N4 mesh is then fully suspended by means of DRIE back etching of the Si substrate. Here we present the first results of these large area bolometers. © Published under licence by IOP Publishing Ltd.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.