We study the shifted analogue of the “Lie–Poisson” construction for L∞ algebroids and we prove that any L∞ algebroid naturally gives rise to shifted derived Poisson manifolds. We also investigate derived Poisson structures from a purely algebraic perspective and, in particular, we establish a homotopy transfer theorem for derived Poisson algebras.
Shifted derived Poisson manifolds associated with Lie pairs / Bandiera, Ruggero; Chen, Zhuo; Stiénon, Mathieu; Xu, Ping. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - (2019). [10.1007/s00220-019-03457-w]
Shifted derived Poisson manifolds associated with Lie pairs
Bandiera, Ruggero;
2019
Abstract
We study the shifted analogue of the “Lie–Poisson” construction for L∞ algebroids and we prove that any L∞ algebroid naturally gives rise to shifted derived Poisson manifolds. We also investigate derived Poisson structures from a purely algebraic perspective and, in particular, we establish a homotopy transfer theorem for derived Poisson algebras.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Bandiera_Shifted-derived-Poisson_2019.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
788.57 kB
Formato
Adobe PDF
|
788.57 kB | Adobe PDF | Contatta l'autore |
Bandiera_preprint_Shifted-derived-Poisson_2019.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
629.78 kB
Formato
Adobe PDF
|
629.78 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.