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Abstract. We study the shifted analogue of the “Lie–Poisson” construction forL∞ algebroids andwe prove that
any L∞ algebroid naturally gives rise to shifted derived Poisson manifolds. We also investigate derived Poisson
structures from a purely algebraic perspective and, in particular, we establish a homotopy transfer theorem for
derived Poisson algebras.

As an application, we prove that, given a Lie pair (L,A), the space tot Ω•A(Λ•(L/A)) admits a degree
(+1) derived Poisson algebra structure with the wedge product as associative multiplication and the Chevalley–
Eilenberg differential dBott

A : Ω•A(Λ•(L/A)) → Ω•+1
A (Λ•(L/A)) as unary L∞ bracket. This degree (+1)

derived Poisson algebra structure on tot Ω•A(Λ•(L/A)) is unique up to an isomorphism having the identity map
as first Taylor coefficient. Consequently, the Chevalley–Eilenberg hypercohomology H(Ω•A(Λ•(L/A)), dBott

A )
admits a canonical Gerstenhaber algebra structure.
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1. Introduction

The notion of Lie pair is a natural framework encompassing a range of diverse geometric contexts including
complex manifolds, foliations, and g-manifolds (that is, manifolds endowed with an action of a Lie algebra
g). By a Lie pair (L,A), we mean an inclusion A ↪→ L of Lie K-algebroids over a smooth manifold M .
(Throughout the paper, we use the symbol K to denote either of the fields R or C.) Recall that a Lie K-
algebroid is a K-vector bundle L → M , whose space of sections is endowed with a Lie bracket [−,−],
together with a bundle map ρ : L → TM ⊗R K called anchor such that ρ : Γ(L) → X (M) ⊗R K is a
morphism of Lie algebras and [X, fY ] = f [X,Y ] +

(
ρ(X)f

)
Y for all X,Y ∈ Γ(L) and f ∈ C∞(M,K).

In other words, a K-vector bundle L → M is a Lie K-algebroid if and only if Γ(L) is a Lie–Rinehart K-
algebra [42] over the commutative ring C∞(M,K). A Lie pair over the one-point spaceM = {∗} is simply
a pair of Lie algebras (g, h) with an inclusion of h into g.

Given a Lie pair (L,A), the quotient L/A is naturally an A-module: ∇Bott
a b = q([a, l]), where a ∈ Γ(A),

b ∈ Γ(L/A), q denotes the projection L � L/A, and l is any element of Γ(L) such that q(l) = b. The flat
A-connection∇Bott on L/A is known as the Bott connection [6].

Let XA and XL denote the differentiable stacks determined by the local Lie groupoids integrating the Lie
algebroids A and L, respectively. The dg algebra

(
tot Ω•A(Λ•(L/A)), dBott

A

)
, where

tot Ω•A(Λ•(L/A)) =
⊕
k,l

Ωk
A(Λl(L/A)[−l])[k],

can be regarded as the space of formal polyvector fields tangent to the fibers of the differentiable stack fibra-
tion XA → XL. For instance, the dg algebra

(
tot Ω•F (Λ•(TM/TF )), dBott

F

)
associated with the Lie pair

(TM , TF ) encoding a foliation F of a smooth manifoldM may be thought of as the space of formal polyvec-
tor fields on the differentiable stack determined by the holonomy groupoid of the foliation F . Therefore, it is
natural to ask whether the dg algebra

(
tot Ω•A(Λ•(L/A)), dBott

A

)
admits a “(+1)-shifted Lie bracket” com-

patible with the wedge product — an analogue of the Schouten bracket on the polyvector fields of a smooth
manifold. The answer is negative; such a bracket does not exist for arbitrary Lie pairs. However, it turns out
that, for every Lie pair (L,A), there does exist a (+1)-shifted L∞ algebra structure on tot Ω•A(Λ•(L/A)),
which is compatible with the wedge product in the sense that all its higher brackets satisfy the graded Leib-
niz rule. This is what we call a degree (+1) derived Poisson algebra, i.e. a “Gerstenhaber algebra up to
homotopy.”

The main theorem of the paper can be summarized as follows:

Theorem 1.1. Given any Lie pair (L,A), the space tot Ω•A(Λ•(L/A)) admits a structure of degree (+1)
derived Poisson algebra, with the wedge product as associative multiplication and the Chevalley–Eilenberg
differential

dBott
A : Ω•A(Λ•(L/A))→ Ω•+1

A (Λ•(L/A))

as unaryL∞ bracket — theA-module structure onΛ•(L/A) is the natural extension of the BottA-connection
on L/A. This degree (+1) derived Poisson algebra structure is unique up to an isomorphism of degree (+1)
derived Poisson algebras having the identity map as first Taylor coefficient.

As an immediate consequence, we obtain the following

Theorem 1.2. Given any Lie pair (L,A), the Chevalley–Eilenberg hypercohomology

H(Ω•A(Λ•(L/A)), dBott
A )

admits a canonical Gerstenhaber algebra structure.

In [2], an L∞[1] algebra structure on tot Ω•A(Λ•(L/A)) was constructed explicitly via Fedosov dg Lie alge-
broids — see Section 4.2. Its construction relies on the choice of additional geometric data: a splitting of
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the short exact sequence 0 → A → L → L/A → 0 and a torsion-free L-connection ∇ on L/A extend-
ing the Bott A-connection. A similar construction for polydifferential operators rather than polyvector fields
was described in [2] as well. Understanding the extent to which the resulting L∞[1] algebra structures on
tot Ω•A(Λ•(L/A)) and its polydifferential operator counterpart depend on the geometric data chosen is an
issue that was addressed in [2].

In this paper, we propose a more direct approach to the two-fold problem of existence and uniqueness of a
structure of derived Poisson algebra of degree (+1) on tot Ω•A(Λ•(L/A)): we describe two new ways of
constructing such structures — one involves L∞ algebroids while the other involves deformations of Dirac
structures — and we prove that all three approaches yield exactly the same degree (+1) derived Poisson
algebra structure on tot Ω•A(Λ•(L/A))—see Section 4.3. The uniqueness of the degree (+1) derived Poisson
algebra structure in Theorem 1.1 then follows from a standard result of Ševera on deformations of Dirac
structures [50, 49].

Let us briefly recall the construction via deformations of Dirac structures. The deformation of Dirac structures
were investigated about 15 years ago by Ševera, Roytenberg, and many others [50, 43]. Given a Courant
algebroid E of signature (n, n), the deformations of a Dirac structureD in E are governed by an L∞ algebra
structure on Γ(Λ•D∨), which is in fact a degree (−1) derived Poisson algebra unique up to isomorphism
[50]. Here Γ(Λ•D∨) =

⊕
l Γ(ΛlD∨)[−l]. Now, given a Lie pair (L,A), it is well known that E = L⊕ L∨

is a Courant algebroid of signature (n, n) and D = A ⊕ A⊥ is a Dirac structure in E [32]. It is easy to see
that the isomorphism Γ(ΛmD∨) ∼=

⊕
k+l=m Ωk

A(Λl(L/A)) identifies the first L∞ bracket on Γ(Λ•D∨) with
the Chevalley–Eilenberg differential dBott

A : Ω•A(Λ•(L/A)) → Ω•+1
A (Λ•(L/A)). Thus one obtains a degree

(−1) derived Poisson algebra structure on the dg algebra
(⊕

k+l=•Ωk
A(Λl(L/A))[−k − l], dBott

A

)
. Shifting

the graduation, we obtain a structure of derived Poisson algebra of degree (+1) on tot Ω•A(Λ•(L/A)) =⊕
k,l Ω

k
A(Λl(L/A))[−k + l].

Next, we proceed to outline the construction of the degree (+1) derived Poisson algebra structure on tot Ω•A(Λ•(L/A))
via L∞ algebroids.

An L∞ algebroid is a vector bundle L →M of Z-graded manifolds endowed with (1) a sequence (λl)l≥1 of
maps λl : ΛlΓ(L) → Γ(L)[2 − l], called multi-brackets, that determine a structure of L∞ algebra on Γ(L)
and (2) a sequence (ρl)l≥0 of bundle maps ρl : ΛlL → TM ⊗R K[1− l], called anchor maps, that determine
a morphism of L∞ algebras from Γ(L) to X (M)⊗R K. The L∞-brackets λl and the anchor maps ρl must
satisfy the usual compatibility condition [18, 8, 52].

There exists an equivalent and more compact definition of L∞ algebroids à la Vaı̆ntrob via dg manifolds [51],
which we will recall briefly. A dg manifold is a Z-graded manifoldM together with a homological vector
field, i.e. vector field Q ∈ X (M) of degree (+1) satisfying Q2 = 0. An L∞ algebroid is a vector bundle
L →M of Z-graded manifolds together with a homological vector fieldQ onL[1] tangent to the zero section
M⊂ L[1] — see Proposition A.1.

It turns out that L∞ algebroids are closely related to shifted derived C∞-Poisson manifolds in the sense of
Pridham [39]. Let X̂ •

poly(M, n) denote the completion of the space of n-shifted polyvector fields onM—
see Appendix C for details. A (−k)-shifted derived Poisson manifold (see Definition 3.1) can be thought of as
a dg manifold (M, Q) equipped with a formal series π =

∑∞
l=2 πl of (k − 2)-shifted polyvector fields, with

πl ∈ X̂ l
poly(M, k − 2) of degree (+1) in X̂ •

poly(M, k − 2)[k − 1], satisfying the Maurer–Cartan equation
[Q, π] + 1

2 [π, π] = 0. The well known “Lie–Poisson” construction admits the following analogue in the
“shifted derived” context.

Theorem 1.3. Let L →M be a vector bundle of Z-graded manifolds, and let k ∈ Z be a fixed integer. The
following statements are equivalent.

(1) The vector bundle L →M is an L∞ algebroid.
(2) The space Γ(Ŝ(L[k])) is a degree k derived Poisson algebra with l-th bracket of weight (1− l).
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(3) The graded manifold L∨[−k] is a (−k)-shifted derived Poisson manifold and the weight of the lth-
bracket on C∞(L∨[−k]) is (1− l).

Now, going back to a Lie pair (L,A), it is easily seen that, once a splitting of the short exact 0→ A→ L→
L/A → 0 has been chosen, the graded vector bundle A[1] × L/A → A[1] acquires a natural L∞ algebroid
structure. This L∞ algebroid was studied by Vitagliano in the special case of a Lie pair corresponding to
a foliation [52]. Applying Theorem 1.3 to this L∞ algebroid and the integer k = +1 yields a degree (+1)
derived Poisson algebra structure on tot Ω•A(Λ•(L/A)).

The discussion of the constructions outlined above occupies Sections 3 and 4. Section 2 is devoted to the
study of derived Poisson structures from a purely algebraic perspective and contains, in particular, the proof
of a homotopy transfer result for derived Poisson algebras.

We would like to point out that, in the context of Z2-grading, “shifted derived Poisson algebras” were stud-
ied by Voronov [55, 56], Khudaverdian–Voronov [24], and Bruce [8], who called them homotopy Poisson
algebras and homotopy Schouten algebras, respectively. Derived Poisson algebras of degree 0 were also stud-
ied by Oh–Park [38] and Cattaneo–Felder [9], who called them P∞ algebras. See also [39, 3]. For recent
developments, see [58], [25] and [57]. References [29, 46, 4] are also related to the present paper.

Notations. In this paper, unless specified otherwise, graded means Z-graded. Given a graded vector space
V =

⊕
n∈Z V

n, we say that an element v ∈ V n has degree n and we write |v| = n. Given a graded vector
space V =

⊕
n∈Z V

n, the symbol V [k] denotes the graded vector space obtained from V by shifting the
graduation according to the rule (V [k])n = V n+k. We write |v|[k] to denote the degree of v when regarded
as an element of V [−k]. Therefore,

|v|[k] = |v|+ k.

The dual V ∨ of a graded vector space V is graded according to the rule (V ∨)n = (V −n)∨.

Likewise, if E =
⊕

n∈ZE
n is a graded vector bundle over a manifold M , E[k] denotes the graded vector

bundle obtained by shifting the graduation of the fibers of E according to the above rule.

Given a vector space V , the symbol Ŝ(V ) denotes the m-adic completion of the symmetric algebra S(V ),
where m is the ideal of S(V ) generated by V . Thus, Ŝ(V ) =

∏∞
p=0 S

p(V ). The symbol S(V ) denotes the
reduced symmetric algebra of V , i.e. S(V ) =

⊕∞
p=1 S

p(V ).

The Koszul sign ε(σ; v1, · · · , vp) of a permutation σ ∈ Sp of p homogeneous vectors v1, v2, . . . , vp of a
graded vector space V —which will be abbreviated as ε(σ) — is determined by the relation

vσ(1) � vσ(2) � · · · � vσ(p) = ε(σ; v1, · · · , vp) v1 � v2 � · · · � vp,

where � denotes the multiplication in the symmetric algebra S(V ).

An (r, s)-shuffle is a permutation σ of the set {1, 2, · · · , r + s} such that σ(1) ≤ σ(2) ≤ · · · ≤ σ(r) and
σ(r + 1) ≤ σ(r + 2) ≤ · · · ≤ σ(r + s). We write Sh(r, s) to denote the set of (r, s)-shuffles.

2. Derived Poisson algebras

2.1. Derived Poisson algebras. Let k ∈ Z be a fixed integer, and K a field of characteristic zero.

Given a Z-graded K-vector space V =
⊕

k∈Z V
i, we denote by (S(V ) = ⊕n≥1V

�n,∆) the reduced sym-
metric tensor coalgebra on V . This is the cofree cocommutative locally conilpotent coalgebra generated
by V . In particular, every coderivation Q : S(V ) → S(V ) is completely determined by its corestriction
p ◦ Q =: q =: (q1, . . . , qn, . . .), where p : S(V ) → V denotes the canonical projection. The sequence
of maps qn : V �n → V , n ≥ 1, are called the Taylor coefficients of Q. Similarly, given another graded
space W , every morphism of coalgebras F : S(W ) → S(V ) is completely determined by its corestriction
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p ◦ F = f = (f1, . . . , fn, . . .). Again we call the sequence of maps fn : W�n → V , n ≥ 1, the Taylor
coefficients of F .

Definition 2.1. A degree k derived Poisson algebra is a Z-graded commutative K-algebra A =
⊕

k∈ZA
i

together with a degree (+1) coderivation

Q : S(A[1− k])→ S(A[1− k])[1]

of the reduced symmetric tensor coalgebra
(
S(A[1− k]),∆

)
satisfying

(1) the cohomological condition Q ◦Q = 0; and
(2) the Leibniz rule

qn(a1, . . . , an−1, ana
′
n) = qn(a1, . . . , an−1, an)a′n + (−1)εan qn(a1, . . . , an−1, a

′
n) (1)

with ε = {(2− n) + (α1 + · · ·+ αn−1) + k(n− 1)}αn, for all n ≥ 1 and a1 ∈ Aα1 , a2 ∈ Aα2 ,
. . . , an ∈ Aαn , a′n ∈ A. An equivalent expression is

qn(a1, . . . , an−1, ana
′
n) = qn(a1, . . . , an−1, an)a′n + (−1)αnα

′
n qn(a1, . . . , an−1, a

′
n)an

for all a1, . . . , an−1 ∈ A, an ∈ Aαn , a′n ∈ Aα
′
n .

To understand the meaning of Equation (1), and in particular the sign (−1)ε of its last term, observe that, if
a1 ∈ Aα1 , a2 ∈ Aα2 , · · · , an ∈ Aαn , or equivalently a1 ∈ (A[1−k])α1−1+k, a2 ∈ (A[1−k])α2−1+k, · · · , an ∈
(A[1− k])αn−1+k, then we have

qn(a1, a2, . . . , an) ∈ (A[1− k])1+(α1−1+k)+(α2−1+k)+···+(αn−1+k),

or equivalently
qn(a1, a2, . . . , an) ∈ A(1−k)+1+(α1−1+k)+(α2−1+k)+···+(αn−1+k).

Therefore,
A 3 x 7→ qn(a1, . . . , an−1, x) ∈ A

is an operator on A of degree

1 + (α1 − 1 + k) + · · ·+ (αn−1 − 1 + k) = (2− n) + (α1 + · · ·+ αn−1) + k(n− 1).

Equation (1) means that this operator is a graded derivation on A.

An equivalent description of the above definition is the following:

Definition 2.2. A degree k derived Poisson algebra is a Z-graded commutative algebra A =
⊕

i∈ZA
i (over

a field K of characteristic zero) endowed with a family of K-multilinear maps λn : A⊗n → A of degree
k(n−1)+2−n, (n = 1, 2, · · · ), defining anL∞ algebra structure onA[−k] such that for all a1, · · · , an−1 ∈
A, the map

A→ A, a 7→ λn(a1, · · · , an−1, a)

is a graded derivation.

We note that the maps λn and qn from the previous definitions are related by décalage, that is,

qn(a1, . . . , an) = (−1)ελn(a1, . . . , an)

for all n ≥ 1 and a1 ∈ Aα1 , . . . , an ∈ Aαn , where ε =
∑n

i=1(n− i)(αi + k). In particular, while the qn can
be considered as degree one graded symmetric maps qn : A[1− k]�n → A[1− k], the λn can be considered
as degree 2 − n graded antisymmetric maps λn : A[−k]∧n → A[−k]. In the sequel, the structure maps λn
are also denoted by {· · · }n, just as the usual Poisson brackets.

A degree k Poisson algebra (see Appendix B) is a degree k derived Poisson algebra, where the only nontrivial
bracket is the binary bracket λ2 = {−,−}.
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Remark 2.3. In the context of Z2-grading, Definition 2.2 reduces to homotopy Poisson algebras and homo-
topy Schouten algebras studied by Voronov [55, 56], Khudaverdian–Voronov [24], and Bruce [8].
Derived Poisson algebras of degree 0were also studied by Oh–Park [38] and Cattaneo–Felder [9], who called
them P∞ algebras.

Given a degree k derived Poisson algebra (A, (λl)l≥1), we have a cochain complex λ1 : A• → A•+1. The
binary bracket λ2 is of degree k, and satisfies the Jacobi identity up to homotopy. The following is thus
immediate.

Proposition 2.4. If A is a degree k derived Poisson algebra, then the binary bracket λ2 induces, on the
cohomology groups H(A, λ1), a degree k Poisson algebra structure.

2.2. Morphisms of derived Poisson algebras.

Definition 2.5. Let (A,QA) and (B,QB) be degree k derived Poisson algebras: here QA denotes the
corresponding coderivation on S(A[1 − k]), similarly for QB , see Definition 2.1. A morphism f∞ =
(f1, . . . , fn, . . .) : B → A of derived Poisson algebras is a collection of degree (k − 1)(n − 1) maps
fn : B⊗n → A, n ≥ 1, such that

(1) If we regard the fn as degree 0 maps B[1 − k]⊗n → A[1 − k] they are graded symmetric, and the
unique morphism F : S(B[1 − k]) → S(A[1 − k]) of coalgebras with corestriction p ◦ F = f∞
satisfies F ◦ QB = QA ◦ F . In other words, this says that the maps fn induce (after décalage) an
L∞ morphism from B[−k] to A[−k].

(2) The following relation is satisfied for all n ≥ 0 and x1, . . . , xn, y, z ∈ B:

fn+1(x1, . . . , xn, yz) =
n∑
i=0

∑
σ∈Sh(i,n−i)

(−1)�fi+1(xσ(1), . . . , xσ(i), y)fn−i+1(xσ(i+1), . . . , xσ(n), z), (2)

where � = ε(σ;x1, x2, · · · , xn) + |y| ((n − i)(k − 1) +
∣∣xσ(i+1)

∣∣ + · · · +
∣∣xσ(n)

∣∣), and the Koszul
sign ε(σ;x1, x2, · · · , xn) associated to the permutation σ is computed by regarding x1, . . . , xn as
elements of B[1− k], that is, of degrees |x1|+ k − 1, . . . , |xn|+ k − 1.
In particular, for n = 0, this says that f1 : B → A is a morphism of associative algebras, and for
n = 1, it says that f2 : B⊗2 → A is an f1-biderivation.

Remark 2.6. Since S(B[1− k]) is a graded cocommutative coalgebra via the unshuffle coproduct ∆ and A
is a graded commutative algebra with productmA : A⊗2 → A, the space Hom(S(B[1− k]), A) is a graded
commutative algebra via the convolution product f ? g = mA ◦ (f ⊗ g) ◦ ∆. Given y ∈ B, we denote by
f(. . . , y) the map

f(. . . , y) : S(B[1− k])→ A,

x1 � · · · � xn 7→ (−1)(n(k−1)+|x1|+···+|xn|)|y|fn+1(x1, . . . , xn, y),

where xi ∈ B|xi| = B[1− k]|xi|+k−1, i = 1, . . . , n. Then Equation (2) is equivalent to
f(. . . , yz) = f(. . . , y) ? f(. . . , z).

In other words, f is a morphism of degree k derived Poisson algebras if and only if
(B,mB)→ (Hom(S(B[1− k]), A), ?),

y 7→ f(. . . , y)

is a morphism of graded algebras.

The following proposition can be proved by a tedious direct computation, which we omit.

Proposition 2.7. With the above definition of morphisms, degree k derived Poisson algebras form a category.
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The following Proposition 2.8 justifies the previous definition in the framework of deformation theory. Given
a graded algebra (A,mA), we denote by L = Coder(S(A[1 − k])) the graded Lie algebra of coderivations
of the reduced symmetric coalgebra S(A[1 − k]). From the point of view of deformation theory (cf. [36]),
this graded Lie algebra controls the deformations of the trivial L∞ algebra structure on A[−k]. In other
words, the set MC(L) of Maurer–Cartan elements of L, that is, the set of solutions Q ∈ L1 of the Maurer-
Cartan equation [Q,Q] = 0, is in bijective correspondence with the set of L∞ algebra structures on A[−k].
Furthermore, the (formal) exponential group exp(L0) = {eR}R∈L0 acts on the set MC(L) via conjugation
Q 7→ e−RQeR, and the corresponding set of orbits parameterizes L∞ algebra structures on A[−k] up to
L∞ isomorphism. An easy computation shows that the subspaceM ⊂ L, spanned by those coderivations Q
whose Taylor coefficients p ◦Q = (q1, . . . , qn, . . .) are multiderivations, i.e., they satisfy the Leibniz rule (1)
from Definition 2.1, is a graded Lie subalgebra. Moreover, it is clear that the Maurer–Cartan elements inM
are precisely the degree k derived Poisson algebra structures on (A,mA). In the following Proposition 2.8,
we show that the (formal) exponential group exp(M0) is precisely the group of coalgebra automorphisms
F : S(A[1− k])→ S(A[1− k]) whose Taylor coefficients p ◦ F = (f1, . . . , fn, . . .) satisfy Equation (2).

In order to avoid convergence issue, we proceed formally. We denote byK[[t]] the algebra of formal power se-
ries, byA[[t]] the algebraA⊗KK[[t]] of formal power series with coefficients inA, and bySK[[t]](A[[t]][1−k])
the reduced symmetricK[[t]]-coalgebra over theK[[t]]-moduleA[[t]][1−k]. Given a degree zero coderivation
R ∈ L0, we consider the associated formal flow etR := F t : SK[[t]](A[[t]][1 − k]) → SK[[t]](A[[t]][1 − k]).
It is a well defined K[[t]]-linear coalgebra automorphism.

Proposition 2.8. Given R ∈ L0, p ◦ R = (r1, . . . , rn, . . .) as above, then the Taylor coefficients f tn of the
formal flow

etR := F t, p ◦ F t = (f t1, . . . , f
t
n, . . .)

satisfy Equation (2) if and only if all Taylor coefficients rn : A⊗n → A, n ≥ 1, are multi-derivations, that is,
if and only if R ∈M0.

Proof. For notational simplicity, in the following computations we abbreviate equations such as Equation (2)
by omitting the x1, . . . , xn arguments, and by writing ±K instead of the appropriate Koszul sign (signs were
made precise in Definition 2.5). For instance, Equation (2) becomes

f tn+1(. . . , yz) =

n∑
i=0

∑
σ∈Sh(i,n−i)

±Kf ti+1(. . . , y)f tn−i+1(. . . , z).

Having set these notations, we proceed with the proof. One implication is easy: assuming Equation (2) is
satisfied, then for all x1, . . . , xn, y, z ∈ A,

rn+1(. . . , yz) =
d

dt
f tn+1(. . . , yz)∣∣t=0

=
n∑
i=0

∑
σ∈Sh(i,n−i)

d

dt

(
±Kf ti+1(. . . , y)f tn−i+1(. . . , z)

)∣∣t=0
=

=
n∑
i=0

∑
σ∈Sh(i,n−i)

±K
d

dt
f ti+1(. . . , y)∣∣t=0

f0
n−i+1(. . . , z)±K f0

i+1(. . . , y)
d

dt
f tn−i+1(. . . , z)∣∣t=0

=

= rn+1(. . . , y)z ±K y rn+1(. . . , z),

since p ◦ F 0 = (id, 0, . . . , 0, . . .), i.e. f0
1 = id and f0

k = 0 for k ≥ 2. This shows that rn+1 is a multi-
derivation for all n ≥ 0.

We turn to the other implication. Since r1 is an algebra derivation, f t1 = etr1 : A[[t]] → A[[t]] is an algebra
morphism. Let n ≥ 1, and fix x1, . . . , xn, y, z ∈ A. We consider the formal power series

A[[t]] 3 ξ(t) := f tn+1(. . . , yz)−
n∑
i=0

∑
σ∈Sh(i,n−i)

±Kf ti+1(. . . , y)f tn−i+1(. . . , z).
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We need to prove that ξ(t) = 0. As before, since F 0 = (id, 0, · · · , 0, · · · ), we see that ξ(0) = 0. Since
F t = etR, we have d

dtF
t = RF t. Using induction on n, we have

d

dt
f tn+1(. . . , yz) =

= r1f
t
n+1(. . . , yz) +

∑
p≥2,i1,...,ip−1≥1,ip≥0

i1+···+ip=n

∑
σ∈Sh(i1,...,ip)

±K
1

(p− 1)!
rp(f

t
i1(. . .), . . . , f tip+1(. . . , yz)) =

= r1(ξ(t)) + r1

 n∑
i=0

∑
σ∈Sh(i,n−i)

±Kf ti+1(. . . , y)f tn−i+1(. . . , z)

+

∑
p≥2,i1,...,ip−1≥1,ip,ip+1≥0

i1+···+ip+1=n

∑
σ∈Sh(i1,...,ip+1)

±K
1

(p− 1)!
rp(f

t
i1(. . .), . . . , f tip+1(. . . , y)f tip+1+1(. . . , z)) =

= r1(ξ(t)) +
∑

p,i1,...,ip−1≥1,ip,ip+1≥0

i1+···+ip+1=n

∑
σ∈Sh(i1,...,ip+1)

±K
1

(p− 1)!
rp(f

t
i1(. . .), . . . , f tip+1(. . . , y))f tip+1+1(. . . , z) +

±K
1

(p− 1)!
f tip+1(. . . , y)rp(f

t
i1(. . .), . . . , f tip+1+1(. . . , z)) =

= r1(ξ(t)) +
n∑
i=0

∑
σ Sh(i,n−i)

±K
d

dt
f ti+1(. . . , y)f tn−i+1(. . . , z)±K f ti+1(. . . , y)

d

dt
f tn−i+1(. . . , z) =

= r1(ξ(t)) +
d

dt

 n∑
i=0

∑
σ∈Sh(i,n−i)

±Kf ti+1(. . . , y)f tn−i+1(. . . , z)

 .

To sum up, we found that
ξ′(t) = r1(ξ(t)),

thus
ξ(n)(t) = rn1 (ξ(t)), ∀n ≥ 0.

Expanding in formal Taylor series,

ξ(t) =
∑
n≥0

tn

n!
ξ(n)(0) =

∑
n≥0

tn

n!
rn1 (ξ(0)) =

∑
n≥0

tn

n!
rn1 (0) = 0.

�

2.3. Homotopy transfer for derived Poisson algebras. In this section, we prove a homotopy transfer the-
orem for derived Poisson algebras.

We start by recalling the standard Perturbation Lemma. To the best of our knowledge, this result first appeared
implicitly in the paper [47], and explicitly in [7, 16]: for the treatment given here, see also [17, 20, 41].

Definition 2.9 ([13]). Let (A, dA) and (B, dB) be cochain complexes. A contraction (σ, τ, h) of (A, dA) onto
(B, dB) is the datum of cochain maps σ : (A, dA) → (B, dB), τ : (B, dB) → (A, dA) and a contracting
homotopy h : A→ A such that

στ = idB, hdA + dAh = τσ − idA,

and furthermore
σh = 0, hτ = 0, h2 = 0.
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We denote such a contraction data by

(A, dA) (B, dB).h
σ

τ

Lemma 2.10 ([47, 7, 16]). Let (σ, τ, h) be a contraction of (A, dA) onto (B, dB), and let δA : A → A be
a perturbation of the differential dA: that is, δA is a degree (+1) map such that d̆A := dA + δA squares to
zero. Then

δB :=

∞∑
i=0

σδA(hδA)iτ

is a perturbation of the differential dB , and (σ̆, τ̆ , h̆) defined by

σ̆ :=
+∞∑
i=0

σ(δAh)i,

τ̆ :=
+∞∑
i=0

(hδA)iτ,

h̆ :=

+∞∑
i=0

h(δAh)i

is a contraction of (A, d̆A) onto (B, d̆B := dB + δB).

To be more precise, we should add some technical assumption ensuring convergence of the above infinite
sums, but we will be loose in that respect and proceed formally.

Definition 2.11. Given dg commutative algebras (A, dA,mA), (B, dB,mB) and a contraction (σ, τ, h) of
(A, dA) onto (B, dB), we say that (σ, τ, h) is a semifull algebra contraction if the following identities are
satisfied for all a, b ∈ A and x, y ∈ B:

h( (−1)|a|+1h(a)b+ ah(b) ) = h(a)h(b), (3)
h(aτ(x)) = h(a)τ(x), (4)

σ( (−1)|a|+1h(a)b+ ah(b) ) = 0, (5)
σ(aτ(x)) = σ(a)x, (6)

τ(xy) = τ(x)τ(y). (7)

Remark 2.12. This class of contractions was introduced by Real [41]. More precisely, in [41, Definition
4.5], Equations (3)-(6) are replaced by the seemingly weaker

h(h(a)h(b)) = h(h(a)τ(x)) = 0,

σ(h(a)h(b)) = σ(h(a)τ(x)) = 0,

whereas Equation (7) is maintained. It is straightforward that, if Equations (3)-(6) are satisfied, then the
above equations are satisfied as well. In fact, our definition and the one from [41] are equivalent (in practice,
the above equations are usually easier to check, on the other hand, Equations (3)-(6) will be the key to the
following computations). To illustrate this fact, we show how to deduce Equation (3) from the above relations:
these imply

h(h(a)b) = h(h(a)(τσ − hdA − dAh)(b)) = −h(h(a)dAh(b)),

and similarly h(ah(b)) = −h(dAh(a)h(b)). Thus

h( (−1)|a|+1h(a)b+ ah(b) ) = −hdA(h(a)h(b)) = (dAh− τσ + id)(h(a)h(b)) = h(a)h(b).

Equations (4)-(6) can be deduced similarly.
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Definition 2.13. Given a dg algebra (A, dA,mA), an algebra perturbation of dA is a perturbation in the usual
sense, which is furthermore an algebra derivation.
Proposition 2.14. Given dg algebras (A, dA,mA), (B, dB,mB), a semifull algebra contraction (σ, τ, h) of
(A, dA,mA) onto (B, dB,mB) and an algebra perturbation δA : A → A of dA, we apply the Perturbation
Lemma 2.10. Then δB is an algebra perturbation of dB , and (σ̆, τ̆ , h̆) is a semifull algebra contraction of
(A, d̆A,mA) onto (B, d̆B,mB).

Proof. This was proved in [41], see also [17, 20] for some related results. For completeness, we sketch a
proof of this fact. To show that

τ̆(xy) = τ̆(x)τ̆(y),

we prove inductively that

(hδA)iτ(xy) =
i∑

j=0

(hδA)jτ(x)(hδA)i−jτ(y), ∀i ≥ 0.

The basis of the induction is Equation (7). Assume the above identity holds for a given i. Then

(hδA)i+1τ(xy) = hδA

 i∑
j=0

(hδA)jτ(x)(hδA)i−jτ(y)

 =

= h
(
δA(hδA)iτ(x)τ(y)

)
+

+

i∑
j=1

h
(

(−1)|x|hδA(hδA)j−1τ(x)δA(hδA)i−jτ(y) + δA(hδA)j−1τ(x)hδA(hδA)i−jτ(y)
)

+

+ (−1)|x|h
(
τ(x)δA(hδA)iτ(y)

)
=

= (hδA)i+1τ(x)τ(y) +
i∑

j=1

(hδA)jτ(x)(hδA)i+1−jτ(y) + τ(x)(hδA)i+1τ(y),

using Equations (3)-(4), which proves the inductive step.
Replacing the leftmost h by σ in the above computation, and using Equations (5)-(6) in the last passage, we
see that

σδA(hδA)iτ(xy) = σδA(hδA)iτ(x)y + (−1)|x|xσδA(hδA)iτ(y),

which implies that δB is indeed an algebra perturbation.

Finally, to show that (τ̆ , σ̆, h̆) satisfies Equations (3)-(6) in Definition 2.11, it suffices to show that it satisfies
the equivalent conditions in Remark 2.12, which follow easily from the definitions. �

The main result of this section is the following theorem, which says that we can transfer derived Poisson
algebra structures along semifull algebra contractions.

Theorem 2.15. Let (A, dA,mA) and (B, dB,mB) be dg commutative algebras, and let (σ, τ, h) be a semifull
algebra contraction of (A, dA,mA) onto (B, dB,mB). Let λn : A⊗n → A, n ≥ 2, be a family of maps
making (A, dA =: λ1, λ2, . . . , λn, . . .) into a degree k derived Poisson algebra. Via homotopy transfer along
the contraction (σ, τ, h), there is an inducedL∞ algebra structure onB[−k], whose structure maps we denote
by `n : B⊗n → B, n ≥ 2. These maps make (B, dB =: `1, `2, . . . , `n, . . .) into a degree k derived Poisson
algebra. Moreover, the L∞ quasi-isomorphism τ∞ = (τ1, τ2, . . . , τn, . . .) from B[−k] to A[−k] induced via
homotopy transfer is a morphism of degree k derived Poisson algebras.
Remark 2.16. It is a well known fact that L∞ algebra structures can be transferred along contractions. For
a proof of this fact, we refer to [21]. See also [1, 14, 5]. The homotopy transfer theorem for L∞ algebra
structures is a direct consequence of the Goldman–Millson theorem [11, 12].
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Proof. In the following computations, to improve readability, we shall omit to make signs explicit, and instead
denote by ±K the appropriate Koszul signs (which can be worked out explicitly as explained in the previous
subsections).

By homotopy transfer formulas, τ1 = τ , and τn+1, `n+1, n ≥ 1, are defined recursively by

τn+1(x1, . . . , xn, y) =∑
p≥2,i1,...,ip−1≥1, ip≥0

i1+···+ip=n

∑
σ∈Sh(i1,...,ip)

±K
1

(p− 1)!
hλp(τi1(xσ(1), . . . , xσ(i1)), . . . , τip+1(xσ(n−ip+1), . . . , xσ(n), y))

and

`n+1(x1, . . . , xn, y) =∑
p≥2,i1,...,ip−1≥1, ip≥0

i1+···+ip=n

∑
σ∈Sh(i1,...,ip)

±K
1

(p− 1)!
σλp(τi1(xσ(1), . . . , xσ(i1)), . . . , τip+1(xσ(n−ip+1), . . . , xσ(n), y)).

For notational simplicity in the following computations, we will omit the x1, . . . , xn variables, and abbreviate
the above equations as

τn+1(x1, . . . , xn, y) =
∑

p≥2,i1,...,ip−1≥1, ip≥0
i1+···+ip=n

∑
σ∈Sh(i1,...,ip)

±K
1

(p− 1)!
hλp(τi1(. . .), . . . , τip+1(. . . , y))

and

`n+1(x1, . . . , xn, y) =
∑

p≥2,i1,...,ip−1≥1, ip≥0
i1+···+ip=n

∑
σ∈Sh(i1,...,ip)

±K
1

(p− 1)!
σλp(τi1(. . .), . . . , τip+1(. . . , y)).

We shall prove first that τ∞ satisfies the required compatibilities with the products. By assumption τ1 = τ is
a morphism of graded algebras. Proceeding inductively,

τn+1(x1, . . . , xn, yz) =∑
p≥2,i1,...,ip−1≥1,ip≥0

i1+···+ip=n

∑
σ∈Sh(i1,...,ip)

±K
1

(p− 1)!
hλp(τi1(. . .), . . . , τip+1(. . . , yz)) =

∑
p≥2,i1,...,ip−1≥1,ip,ip+1≥0

i1+···+ip+1=n

∑
σ∈Sh(i1,...,ip+1)

±K
1

(p− 1)!
hλp(τi1(. . .), . . . , τip+1(. . . , y)τip+1+1(. . . , z)) =

∑
p≥2,i1,...,ip−1≥1,ip,ip+1≥0

i1+···+ip+1=n

∑
σ∈Sh(i1,...,ip+1)

±K
1

(p− 1)!
h
(
λp(τi1(. . .), . . . , τip+1(. . . , y))τip+1+1(. . . , z)

)
+

±K
1

(p− 1)!
h
(
τip+1(. . . , y)λp(τi1(. . .), . . . , τip+1+1(. . . , z))

)
=

τn+1(x1, . . . , xn, y)τ1(z)±K τ1(y)τn+1(x1, . . . , xn, z) +
∑
i,j≥1
i+j=n

∑
p≥2,i1,...,ip−1≥1,ip≥0

i1+···+ip=i

∑
q≥2,j1,...,jq−1≥1,jq≥0

j1+···+jq=j∑
σ∈Sh(i1,...,jq)

±K
1

(p− 1)!
h

(
λp(τi1(. . .), . . . , τip+1(. . . , y))

1

(q − 1)!
hλq(τj1(. . .), . . . , τjq+1(. . . , z))

)
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±K
1

(q − 1)!
h

(
1

(p− 1)!
hλp(τi1(. . .), . . . , τip+1(. . . , y))λq(τj1(. . .), . . . , τjq+1(. . . , z))

)
=

τn+1(x1, . . . , xn, y)τ1(z)±K τ1(y)τn+1(x1, . . . , xn, z) +
∑
i,j≥1
i+j=n

∑
p≥2,i1,...,ip−1≥1,ip≥0

i1+···+ip=i

∑
q≥2,j1,...,jq−1≥1,jq≥0

j1+···+jq=j∑
σ∈Sh(i1,...,jq)

±K
1

(p− 1)!
hλp(τi1(. . .), . . . , τip+1(. . . , y))

1

(q − 1)!
hλq(τj1(. . .), . . . , τjq+1(. . . , z)) =

n∑
i=0

∑
σ∈Sh(i,n−i)

±Kτi+1(. . . , y)τn−i+1(. . . , z),

where we used the identities (3)-(4).

Comparing the formula for τn+1 and the one for `n+1 at the beginning of the proof, to show that the `n+1 are
multi-derivations we can follow the above computations, replacing the leftmost h by σ and using the identities
(5)-(6) (instead of (3)-(4)) when appropriate. �

3. Shifted derived Poisson manifolds

3.1. Shifted derived Poisson manifolds.

Definition 3.1. A (−k)-shifted derived Poisson manifold is a Z-graded manifoldM whose sheaf of functions
C∞M is a sheaf of degree k derived Poisson algebras.

Equivalently, a (−k)-shifted derived Poisson manifold is a Z-graded manifoldM such that C∞(M), the
space of global functions onM, is endowed with a degree k derived Poisson algebra structure

λl : (C∞(M))⊗l → C∞(M), l ≥ 1.

Example 3.2. Let g be a finite dimensional L∞ algebra. By extending the L∞ structure maps λl (l ≥ 1) on
g to the completed symmetric algebra Ŝ(g[k]) via the Leibniz rule, one obtains a degree k derived Poisson
algebra on Ŝ(g[k]) = C∞(g∨[−k]). Thus g∨[−k] is a (−k)-shifted derived Poisson manifold, called (−k)-
shifted derived Lie Poisson manifold. In particular, g∨ is a derived Lie Poisson manifold. See [29].

If g is an ordinary Lie algebra, (g[0])∨ = g∨ admits a Poisson manifold structure, called Lie–Poisson struc-
ture. On the other hand, we have the standard Schouten algebra Λ•g, which corresponds to the (−1)-shifted
Poisson manifold structure on g∨[−1].

The following proposition relates the notion of shifted derived Poisson manifolds introduced above with the
one defined by Pridham [39, 40].

LetM be a Z-graded manifold. By X̂ •
poly(M, n), we denote the formally completed Schouten–Nijenhuis

algebra of n-shifted polyvector fields onM (see Appendix C).

Proposition 3.3. A (−k)-shifted derived Poisson manifold is equivalent to a dg manifold (M, Q) equipped
with a formal series of (k−2)-shifted polyvector fields π =

∑∞
l=2 πl satisfying the Maurer–Cartan equation:

[Q, π] +
1

2
[π, π] = 0, (8)

where πl ∈ X̂ l
poly(M, k − 2) is of total degree (+1) in X̂ •

poly(M, k − 2)[k − 1].

Proof. Assume thatM is a (−k)-shifted derived Poisson manifold. Let λl : (C∞(M))⊗l → C∞(M),
l ≥ 1, be the multi-brackets of the corresponding shifted L∞ algebra.
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The unary bracket λ1 : C∞(M) → C∞(M) is a derivation of degree (+1) and squares to zero. Thus it
determines a homological vector field Q onM, which is also denoted by π1. Since (λl)

∞
l=1 defines an L∞

algebra structure onC∞(M)[−k], for any l ≥ 2, λl is a skew-symmetric multi-bracket onC∞(M)[−k], i.e.,

λl(· · · , f, g · · · ) = −(−1)|f |
[k]|g|[k]λl(· · · , g, f · · · ).

Let πl(f1, f2, · · · , fl) = (−1)?λl(f1, f2, · · · , fl), where ? = (l− 1) |f1|[k] + (l− 2) |f2|[k] + · · ·+ |fl−1|[k],
then πl is a symmetric multilinear map on C∞(M)[−k + 1], i.e.

πl(· · · , f, g · · · ) = (−1)|f |
[k−1]|g|[k−1]

πl(· · · , g, f · · · ).

It is clear that πl is a multi-derivation in each argument. According to Appendix C, πl can be considered as
a (k − 2)-shifted l-polyvector field onM, i.e. πl ∈X l

poly(M, k − 2). Moreover, its total degree is

‖ πl ‖k−2= |πl| − l(k − 1) = |λl| − l(k − 1) = 2− k.

Therefore, when being considered as an element in X l
poly(M, k − 2)[k − 1], πl is of degree (+1). Let

Λ = Q+ π =
∑

l≥1 πl. Then Λ is of total degree (+1). Let

Π =
1

2
[Λ,Λ].

According to Lemma C.3,

Π = Λ ◦ Λ =
∑
m,n≥1

πm ◦ πn ∈
∞⊕
l=2

X l
poly(M, k − 2)[k − 1].

The weight p component of Π is
Πp =

∑
m+n−1=p

πm ◦ πn . (9)

For any f1, f2, · · · , fm+n−1 ∈ C∞(M),

(πm ◦ πn)(f1, · · · , fm+n−1)

=
∑

σ∈Sh(m,n−1)

ε[k−1](σ)πm(πn(fσ(1), · · · , fσ(n)), fσ(n+1), · · · , fσ(m+n−1))

=
∑

σ∈Sh(m,n−1)

(−1)?

ε[k−1](σ)λm(λn(fσ(1), · · · , fσ(n)), fσ(n+1), · · · , fσ(m+n−1))

where ?=(n−1)|fσ(1)|[k]+···+|fσ(n−1)|[k]+(m−1)(|fσ(1)|[k]+···+|fσ(n)|[k]+2−n)+(m−2)|fσ(n+1)|[k]+···+|fσ(m+n−2)|[k]

= (−1)(m−1)n+K
∑

σ∈Sh(m,n−1)

|σ| ε[k](σ)λm(λn(fσ(1), · · · , fσ(n)), fσ(n+1), · · · , fσ(m+n−1)).

HereK denotes the constant integer (p− 1) |f1|[k] + (p− 2) |f2|[k] + · · ·+ |fp−1|[k].
Equation (8) is equivalent to the condition that Πp = 0 for all p ≥ 2. According to Equation (9), the latter is
equivalent to that ∀ f1, · · · , fp ∈ C∞(M),∑

m+n−1=p

(−1)(m−1)n
∑

σ∈Sh(m,n−1)

|σ| ε[k](σ)λm(λn(fσ(1), · · · , fσ(n)), fσ(n+1), · · · , fσ(p)) = 0.

It is clear that this is exactly the generalized Jacobi identity of the L∞ algebra structure on C∞(M)[−k].

The converse is proved by going backwards. This concludes the proof. �
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Example 3.4. A (−1)-shifted derived Poisson manifold is equivalent to a dg manifold (M, Q) equipped with
a formal series π =

∑∞
l=2 πl satisfying the Maurer–Cartan equation:

[Q, π] +
1

2
[π, π] = 0, (10)

where, for each l ≥ 2, πl ∈ Γ(SlTM) is of degree (+1), and the bracket in Equation (10) is the canonical
Poisson bracket on Γ(ŜTM) being identified with the space of formal polynomials on the symplectic manifold
T∨M.

Definition 3.5. LetM andM′ be (−k)-shifted derived Poissonmanifolds with structuremapsλl : (C∞(M))⊗l

→ C∞(M) and λ′l : (C∞(M′))⊗l → C∞(M′), l ≥ 1, respectively. A morphism of (−k)-shifted derived
Poisson manifolds fromM toM′ is a map of Z-graded manifolds φ :M→M′ together with a collection
of maps

ϕn : (C∞(M′))⊗n → C∞(M), n = 2, 3, · · ·
such that ϕ∞ = (ϕ1 = φ∗, ϕ2, ϕ3, · · · ) is a morphism of degree k derived Poisson algebras from (C∞(M′),
λ′1, λ′2, · · · , λ′n, · · · ) to (C∞(M), λ1, λ2, · · · , λn, · · · ).

In particular, φ :M→M′ is a map of dg manifolds.

3.2. L∞ algebroids and shifted derived Poisson manifolds. Below we follow Bruce [8] for the notations,
who considered the Z2-case.

Definition 3.6. An L∞ algebroid consists of a vector bundle L →M of Z-graded manifolds together with

• a sequence of multilinear maps λl : ΛlΓ(L)→ Γ(L) of degree (2− l), l ≥ 1, called multi-brackets,
that determine an L∞ algebra structure on Γ(L), the space of sections of L →M; and
• a sequence of bundle maps ρl : ΛlL → TM of degree (1− l), l ≥ 0, called multi-anchor maps, that
induce a morphism of L∞ algebras from Γ(L) to X (M)

such that the following compatibility condition is satisfied:

λl
(
a1, a2, · · · , al−1, fal

)
= ρl−1(a1, a2, · · · , al−1)(f)al

+ (−1)(l+|a1|+···+|al−1|)|f |fλl
(
a1, a2, · · · , al−1, al

)
(11)

∀l ≥ 1, a1, · · · , al ∈ Γ(L), and f ∈ C∞(M).

Remark 3.7. Note that the image of ρ1 may not be integrable. WhenM is an ordinary smooth manifoldM
(being considered of degree zero) and the vector bundle L =

⊕
i≥0 L

i →M is a non-negative graded vector
bundle, due to degree reasons, all higher anchor maps ρl vanish except for ρ1, which must be a bundle map
L0 → TM . Our notion of L∞ algebroids reduces to the one studied by Laurent–Gengoux et. al. [30]. In this
case, ρ1(L0) defines a singular foliation onM . When L is concentrated in degree 0, it becomes a usual Lie
algebroid overM .

We also note that various forms of L∞ algebroids have appeared in the literature. We refer the reader to
[24, 26, 27, 45, 54, 4, 46, 19] and the references there on the related topic.

The following proposition extends Theorem 1 and Corollary 2 in [8] to the Z-graded context.

Proposition 3.8. Let L → M be a vector bundle of Z-graded manifolds, and let k ∈ Z be a fixed integer.
The following statements are equivalent.

(1) The vector bundle L →M is an L∞ algebroid.
(2) The space Γ(Ŝ(L[k])) is a degree k derived Poisson algebra, whose lth-bracket λl : ΛlΓ(L)→ Γ(L)

is of weight (1− l).
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(3) The graded manifold L∨[−k] is a (−k)-shifted derived Poisson manifold, where the weight of the
lth-bracket on C∞(L∨[−k]) is (1− l).

Recall that elements in Γ(Sm(L[k])) are of weightm. The weight of the lth-bracket

λl : Γ(S•(L[k]))× · · · × Γ(S•(L[k]))→ Γ(S•(L[k]))

is the difference of weights on both sides.

Proof. Note that (2) and (3) are clearly equivalent by definition. Below, we prove the equivalence between
(1) and (2).

Assume that L → M is an L∞ algebroid. Then the L∞ algebra structure on Γ(L) together with the multi-
anchor maps defines a degree k derived Poisson algebra, via the Leibniz rule, on Γ(Ŝ(L[k])) by the following
generating relations:

λl(a1, · · · , al−1, f) = ρl−1(a1, · · · , al−1)f, (l ≥ 1) (12)
λl(f, g, · · · ) = 0, (l ≥ 2), (13)

∀a1, · · · , al ∈ Γ(L[k]), and f, g ∈ C∞(M). It is easy to check that its lth bracket is of weight (1− l).

The converse can be proved by going backwards using Equations (12)-(13). �

Remark 3.9. We note that Vitagliano has already observed a similar result in the algebraic context of LR∞
algebras. For details, see [54, 53].

Let L → M be an L∞ algebroid with structure maps (λl)l≥1 and (ρl)l≥0 as in Definition 3.6. The unary
bracket λ1 : Γ(L)→ Γ(L) and ρ0 ∈X (M) are compatible:

λ1(fa) = ρ0(f)a+ (−1)|f |fλ1(a), ∀a ∈ Γ(L), f ∈ C∞(M).

Introduce a dual map λ∨1 : Γ(L∨)→ Γ(L∨) by〈
λ∨1 (ξ), a

〉
= ρ0 〈ξ, a〉 − (−1)|ξ| 〈ξ, λ1(a)〉 , ∀ξ ∈ Γ(L∨),∀a ∈ Γ(L).

Since λ2
1 = 0, it follows that (λ∨1 )2 = 0. Hence (Γ(L∨), λ∨1 ) is a cochain complex.

Definition 3.10. Let L1 →M1 and L2 →M2 be L∞ algebroids.

(1) A morphism of L∞ algebroids from L1 →M1 to L2 →M2 is a sequence of bundle maps

ΛpL1 L2

M1 M2

φp

φ0

for p = 1, 2, · · · , such that the induced map φ : L1[1]→ L2[1] is a map of dg manifolds.1
(2) A quasi-isomorphism from L1 →M1 to L2 →M2 is a morphism of L∞ algebroids φ : L1 → L2

such that φ∨1 : Γ(L∨2 )→ Γ(L∨1 ) is a quasi-isomorphism of cochain complexes.

The following fact can be easily verified.

1This means that the induced morphism of commutative algebras over φ∨0 : C∞(M2)→ C∞(M1):

φ∨ : C∞(L2[1]) = Γ(Ŝ(L∨2 [−1]))→ C∞(L1[1]) = Γ(Ŝ(L∨1 [−1]))

commutes with the homological vector fields Q1 and Q2: Q2 ◦ φ∨ = φ∨ ◦ Q1. Here Q1 and Q2 are, respectively, homological
vector fields on L1[1] and L2[1] corresponding to the L∞ algebroid structures as in Proposition A.1.
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Proposition 3.11. Let L1 →M and L2 →M be L∞ algebroids. Let

ΛpL1 L2

M M

φp

Id

(for p = 1, 2, · · · ) be a morphism of L∞ algebroids. Then there induces a morphism of (−k)-shifted derived
Poisson manifolds from L∨2 [−k] to L∨1 [−k].

Proof. Consider the morphism of L∞ algebroids from L1 → M1 to L2 → M2 as in Definition 3.10. In
general, φ0 :M1 →M2 is a map of graded manifold. WhenM1 =M2 =M and φ0 = Id, there induces
a family of C∞(M)-multilinear maps

φ̃p : ΛpΓ(L1)→ Γ(L2).

As (φp)p≥1 consists a morphism of L∞ algebroids from L1 →M to L2 →M, the above (φ̃p)p≥1 defines a
morphism of L∞ algebras from Γ(L1) to Γ(L2). Moreover, each φ̃p is skew-symmetric.

Then one extends (φ̃p)p≥1 to a family of skew-symmetric maps:

φ̃p : Λp
(
Γ(Ŝ(L1[k]))[−k]

)
→ Γ(Ŝ(L2[k]))[−k],

satisfying Equation (2). Hence we obtain a morphism of degree k derived Poisson algebras from Γ(Ŝ(L1[k]))

to Γ(Ŝ(L2[k])), or equivalently, a morphism of (−k)-shifted derived Poisson manifolds from L∨2 [−k] to
L∨1 [−k]. �

4. The (+1)-shifted derived Poisson algebra arising from a Lie pair

4.1. First construction: L∞ algebroid arising from a Lie pair. By a Lie pair (L,A), we mean an ordinary
(non-graded) Lie algebroid (L, [·, ·]L, ρL) over an ordinary (non-graded) smooth manifoldM , together with
a Lie subalgebroid (A, [·, ·]A, ρA) of L over the same baseM .

For convenience, let us denote the quotient vector bundle L/A by B. Denote prB : L → B the projection
map. Note that B is naturally an A-module:

∇Bott
a b = prB[a, l]L,

where a ∈ Γ(A), b ∈ Γ(B) and l ∈ Γ(L) satisfying prB(l) = b. The flat A-connection ∇Bott on B is also
known as the Bott connection [6, 10].

Let

Ω•A = ⊕k=0Γ(ΛkA∨)[−k],

Ω•A(Λ•B) = ⊕k,lΓ(ΛkA∨ ⊗ ΛlB)[−k + l].

Note that elements in Ωk
A(ΛlB) are of degree k − l. Denote by

dBott
A : Ωk

A(ΛlB)→ Ωk+1
A (ΛlB) (14)

the standard Chevalley–Eilenberg differential corresponding to the Bott A-connection on Λ•B.

Proposition 4.1. Let (L,A) be a Lie pair. Any splitting j : B → L of the exact sequence

0→ A
i−→ L

prB−−→ B → 0 (15)

induces an L∞ algebroid structure on the Z-graded vector bundle A[1]⊕B → A[1].
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Proof. A splitting of (15) is a pair of maps j : B → L and prA : L→ A such that prB ◦j = idB , prA ◦i = idA
and i ◦ prA +j ◦ prB = idL:

0 A L B 0
i

prA

prB

j
.

We therefore obtain an isomorphism of vector bundles overM :

κ : A⊕B '−→ L, (a, b) 7→ i(a) + j(b), (16)

for all a ∈ A and b ∈ B. Consider the Z-graded vector bundle L → A[1], where L := A[1]⊕ B. Note that
the base of L is A[1]. Then L[1] = A[1]⊕B[1] ∼= L[1] according to (16).

Since L is a Lie algebroid, the standard Chevalley–Eilenberg differential dL : Γ(Λ•L∨) → Γ(Λ•+1L∨)
defines a homological vector field QL on L[1]. Via the identification (16), one obtains a homological vector
field Q on L[1]. Since A is a Lie subalgebroid of L, it is simple to see that the homological vector field
Q on L[1] is indeed tangent to the zero section A[1] ⊂ L[1], whose restriction can be identified with the
Chevalley–Eilenberg differential dA on A[1]. Thus by Proposition A.1, L = A[1] ⊕ B → A[1] is indeed an
L∞ algebroid. �

Remark 4.2. According to Proposition 4.17, different choices of splittings give rise to isomorphic L∞ alge-
bras Γ(L) ∼= Ω•A(B), where the isomorphism is given by a collection of multilinear maps

ϕn : ∧nΩ•A(B)→ Ω•A(B), n = 1, 2, · · ·

with ϕ1 = id. However since ϕn (n ≥ 2) is not C∞(A[1]) = Ω•A-multilinear, ϕn does not correspond to a
bundle map∧nL → L. Therefore, the correspondingL∞ algebroid structures on theZ-graded vector bundle
L = A[1]⊕B → A[1] are “not” isomorphic.

As an immediate consequence of Proposition 4.1, we have the following

Proposition 4.3. Let (L,A) be a Lie pair. Then any splitting of (15) induces a degree (+1) derived Poisson
algebra structure on tot Ω•A(Λ•B), where themultiplication is the wedge product, and the shiftedL∞ brackets
are given as follows:

(1) The unary bracket l1 is the Chevalley–Eilenberg differential dBott
A as in Equation (14).

(2) The binary bracket

{−,−}2 : Ωi
A(ΛjB)× Ωp

A(ΛlB)→ Ωi+p
A (Λj+l−1B)

is generated by the following relations:
a) {u, v}2 = prB[u, v]L, ∀u, v ∈ Γ(B);
b) {u, ω}2 = prA∨(Luω), ∀u ∈ Γ(B), ω ∈ Γ(A∨);
c) {u, f}2 = ρL(u)f , ∀u ∈ Γ(B), f ∈ C∞(M);
d) {ω1, ω2}2 = 0, ∀ω1, ω2 ∈ Ω•A.

(3) The ternary bracket

{−,−,−}3 : Ωi
A(ΛjB)× Ωp

A(ΛlB)× Ωr
A(ΛsB)→ Ωi+p+r−1

A (Λj+l+s−2B)

is C∞(M)-linear in each entry and generated by the following relations:
a) {−,−,−}3 vanishes when being restricted to Γ(B)×Γ(B)×Γ(B), Γ(B)×Γ(A∨)×Γ(A∨),

and Γ(A∨)× Γ(A∨)× Γ(A∨);
b) {u, v, ω}3 = 〈prA[u, v]L, ω〉, for all u, v ∈ Γ(B) and ω ∈ Γ(A∨).

(4) All the rest of higher brackets vanish.

Here we have used the identification L ∼= A⊕B and L∨ ∼= A∨ ⊕B∨.
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To prove Proposition 4.3, we need to give an explicit expression for the homological vector field Q on L[1].
Choosing a splitting of (15), we have an identification L ∼= A⊕B. Besides the Bott A-connection∇ on B,
we also have a B-“connection” on A:

Γ(B)⊗ Γ(A)→ Γ(A) : (u, a) 7→ ∆ua = prA[u, a]L. (17)

Introduce the following maps:
ρB : B → TM , ρB = ρL|B,

[−,−]B : Γ(B)⊗ Γ(B)→ Γ(B), [u1, u2]B = prB[u1, u2]L,

β(−,−) : Γ(B)⊗ Γ(B)→ Γ(A), β(u1, u2) = prA[u1, u2]L,

∀u1, u2 ∈ Γ(B). The Lie algebroid structure on L can be described as follows:
[a1, a2]L = [a1, a2]A;

[u1, u2]L = β(u1, u2) + [u1, u2]B;

[a, u]L = −∆ua+∇Bott
a u;

ρL(a+ u) = ρA(a) + ρB(u),

(18)

∀a, a1, a2 ∈ Γ(A), u, u1, u2 ∈ Γ(B).
Let Ωp

A(ΛqB∨) = Γ(ΛpA∨ ⊗ ΛqB∨). Then

C∞(L[1]) = Γ(Λ•L∨[−1]) ∼= ⊕p≥0,q≥0Ωp
A(ΛqB∨)[−p− q]. (19)

Since ∧•B is an A-module, we have the standard Chevalley–Eilenberg differential

dBott
A : Ωp

A(ΛqB∨)→ Ωp+1
A (ΛqB∨).

In a similar fashion, we can define a map

d∆
B : Ωp

A(ΛqB∨)→ Ωp
A(Λq+1B∨).

Note that, however, d∆
B may not square to zero. There is also a degree (+1) derivation:

dβ : Ωp
A(ΛqB∨)→ Ωp−1

A (Λq+2B∨),

generated by the following relations:
dβf = 0, ∀f ∈ C∞(M);

〈dβ(ω), u1 ∧ u2〉 = −〈ω, β(u1, u2)〉 , ∀ω ∈ Γ(A∨), u1, u2 ∈ Γ(B).

The following lemma is immediate.

Lemma 4.4. Under the isomorphism (19), the homological vector field Q on L[1] is given by
dL = dBott

A + d∆
B + dβ. (20)

Consider the vector bundle of Z-graded manifolds L = A[1] ⊕ B → A[1]. Its space of sections Γ(L) is
isomorphic to Ω•A(B). The space of vector fields on A[1] is Der(Ω•A).

Lemma 4.5. The L∞ algebroid structure on L → A[1], where L = A[1] ⊕ B, as in Proposition 4.1 is
determined by the following relations:

(1) The 0th anchor ρ0 = dA : Ω•A → Ω•+1
A is the Chevalley–Eilenberg differential of the Lie algebroid

A.
(2) The unary anchor ρ1 : L → TA[1] is determined by

ρ1(u) = ∆u, ∀u ∈ Γ(B).

(3) The binary anchor ρ2 : ∧2L → TA[1] is determined by
ρ2(u1, u2) = iβ(u1,u2), ∀u1, u2 ∈ Γ(B).
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(4) The unary bracket l1 coincides with the Chevalley–Eilenberg differential dBott
A : Ω•A(B)→ Ω•+1

A (B).
(5) The binary bracket l2 : ∧2Γ(L)→ Γ(L) is determined by

l2(u1, u2) = [u1, u2]B, ∀u1, u2 ∈ Γ(B).

(6) The ternary bracket l3 : ∧3Γ(L)→ Γ(L) is determined by

l3(u1, u2, u3) = 0, ∀u1, u2, u3 ∈ Γ(B).

(7) All higher brackets li (i ≥ 4), and anchors ρj (j ≥ 3) vanish.

Proof. We follow the construction as in the proof of Proposition A.1. The relevant Voronov data are as
follows:

(1) The graded Lie algebra of first order differential operators on L[1] is

A = D≤1(L[1]) ∼= Der(Ω•A(Λ•B∨))⊕ Ω•A(Λ•B∨).

Here elements in Ω•A(Λ•B∨) = C∞(L[1]) are considered as zeroth order differentials, i.e. the mul-
tiplication by functions.

(2) The abelian Lie subalgebra a = Γ(L[1])⊕ C∞(A[1]) ∼= Ω•A(B)⊕ Ω•A.
The inclusion a ↪→ A is given as follows: ∀ a ∈ Ωr

A(B), ιa is the contraction operator

ιa : Ωp
A(ΛqB∨)→ Ωp+r

A (Λq−1B∨).

Here Ω•A is considered as a subalgebra in Ω•A(Λ•B∨) naturally.
(3) The projection map P : A→ a is given by

P (v + µ) = P1(v) + P2(µ), ∀v ∈ Der(Ω•A(Λ•B∨)), µ ∈ Ω•A(Λ•B∨),

where P2 : Ω•A(Λ•B∨) → Ω•A is the natural projection, and P1 : Der(Ω•A(Λ•B∨)) → Ω•A(B) is
defined as follows: ∀v ∈ Der(Ω•A(Λ•B∨)), P1(v) ∈ Ω•A(B) is determined by the composition

Γ(B∨)
v−→ Ω•A(Λ•B∨)

pr−→ Ω•A.

(4) The homological vector field Q ∈ A on L[1] is dL = dBott
A + d∆

B + dβ as in Equation (20).

We now apply Equations (38) and (37) to obtain structure maps of the L∞ algebroid structure on L → A[1].
For this purpose, observe that, in the decomposition dL = dBott

A + d∆
B + dβ , the operator dBott

A is of weight
0, d∆

B is of weight 1, and dβ is of weight 2.

Applying Equation (37), the 0th anchor is given by

ρ0(ω) = P2[dL, ω] = [dBott
A , ω] = dA(ω), ∀ω ∈ Ω•A.

This proves (1). The unary anchor can be obtained by the same method:

ρ1(u)(ω) = P2[[dL, ιu], ω] = [[d∆
B , ιu], ω]

= (d∆
B ◦ ιu + ιu ◦ d∆

B)ω

= ιud
∆
Bω = ∆uω, ∀ω ∈ Ω•A.

This proves (2). One can prove (3) similarly.

Next we describe the multi-brackets. For the unary bracket, we apply Equation (38). For any u ∈ Γ(B), note
that l1(u) ∈ Ω1

A(B). For any η ∈ Ω0
A(Λ1B∨) = Γ(B∨), we have

ιl1(u)(η) = (P1[dL, ιu])(η) = [dBott
A , ιu](η)

= (dBott
A ◦ ιu + ιu ◦ dBott

A )(η)

= ιdBott
A u(η).

This proves (4).
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For the binary bracket, let u1, u2 ∈ Γ(B), η ∈ Γ(B∨). Then,

ιl2(u1,u2)(η) = (P1[[dL, ιu1 ], ιu2 ])(η) = [[d∆
B , ιu1 ], ιu2 ](η)

= (d∆
B ◦ ιu1 ◦ ιu2 + ιu1 ◦ d∆

B ◦ ιu2 − ιu2 ◦ d∆
B ◦ ιu1 − ιu2 ◦ ιu1 ◦ d∆

B)(η)

= ιu1d
∆
B 〈u2, η〉 − ιu2d∆

B 〈u1, η〉 − ιu1ιu2d∆
B(η)

= 〈η, [u1, u2]B〉 = ι[u1,u2]B
(η).

This proves (5). The rest of claims (6) and (7) can be proved in a similar fashion. �

Proof of Proposition 4.3. According to Theorem 3.8, the L∞ algebroid L → A[1] induces a degree (+1) de-
rived Poisson algebra structure on the space of sections Γ(Ŝ(L[1])) ∼= tot Ω•A(Λ•B), whose multi-brackets
are obtained from the structure maps on L by applying the Leibniz rule. The rest follows from a straightfor-
ward verification. �

4.2. Second construction: Fedosov dg Lie algebroid arising from a Lie pair. Let us first recall Fedosov
dg Lie algebroids as constructed in [2]. We will use the same settings as in Section 4.1: a Lie pair (L,A)
and B = L/A. Consider the graded vector bundleM → L[1], whereM = L[1] ⊕ B. It is clear that
C∞(M) ∼= Γ(Λ•L∨ ⊗ ŜB∨).

Given a splitting of the short exact sequence (15), the following maps are established in [2, 48]

• δ : Γ(Λ•L∨ ⊗ ŜB∨)→ Γ(Λ•+1L∨ ⊗ ŜB∨), a degree (+1) derivation;
• σ : Γ(Λ•L∨ ⊗ ŜB∨)→ Γ(Λ•A∨), the projection;
• τ : Γ(Λ•A∨)→ Γ(Λ•L∨ ⊗ ŜB∨), the inclusion;
• h : Γ(Λ•L∨ ⊗ ŜB∨)→ Γ(Λ•−1L∨ ⊗ ŜB∨), the homotopy map;
• σ\ = σ ⊗ 1 : Γ(Λ•L∨ ⊗ ŜB∨ ⊗ Λ•B)→ Γ(Λ•A∨ ⊗ Λ•B), the projection;
• τ\ = τ ⊗ 1 : Γ(Λ•A∨ ⊗ Λ•B)→ Γ(Λ•L∨ ⊗ ŜB∨ ⊗ Λ•B), the inclusion;
• h\ = h⊗ 1 : Γ(Λ•L∨ ⊗ ŜB∨ ⊗ Λ•B)→ Γ(Λ•−1L∨ ⊗ ŜB∨ ⊗ Λ•B), the homotopy map.

We recall a result in [48]:

Proposition 4.6 (Theorem 2.5 in [48]). Let (L,A) be a Lie pair. Given a splitting of the short exact sequence
(15) and a torsion-free L-connection ∇ on B extending the Bott A-connection, there exists a unique 1-form
valued in formal vertical vector fields of B:

X∇ ∈ Γ(L∨ ⊗ Ŝ>2B∨ ⊗B)

satisfying h\(X∇) = 0 and such that the derivationQ : Γ(Λ•L∨⊗ ŜB∨)→ Γ(Λ•+1L∨⊗ ŜB∨) defined by

Q = −δ + d∇L +X∇ (21)

satisfies Q2 = 0. Here

(1) d∇L : Γ(Λ•L∨ ⊗ ŜB∨) → Γ(Λ•+1L∨ ⊗ ŜB∨) is the covariant derivative associated with the L-
connection∇ on B;

(2) X∇ acts on the algebra Γ(Λ•L∨ ⊗ ŜB∨) as a derivation in a natural fashion.

As a consequence, (M = L[1]⊕B,Q) is a dg manifold, called the Fedosov dg manifold [48]. Consider the
surjective submersionM → M . Let F → M denote the pullback of the vector bundle B → M through
M→M . It is a graded vector bundle whose total spaceF is the graded manifold with supportM associated
with the graded vector bundleL[1]⊕B⊕B →M . Its space of sections Γ(F →M) is canonically identified
with C∞(M) ⊗C∞(M) Γ(B) = Γ(Λ•L∨ ⊗ Ŝ(B∨) ⊗ B). It is naturally a vector subbundle of TM →M;
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the inclusion Γ(F → M) ↪→ X (M) takes the section (λ ⊗ χJ) ⊗ ∂k ∈ C∞(M) ⊗C∞(M) Γ(B) of the
vector bundle F →M to the derivation

µ⊗ χM 7→
∑
i

λ ∧ µ⊗Miχ
J+M−ei

of C∞(M). Here M = (· · ·Mi · · · ) denotes a multi-index, and ei denotes the multi-index all of whose
components are 0 except for the ith which is equal to 1. It is simple to see that F ⊂ TM is a dg foliation
of the dg manifold (M, Q), which is called the Fedosov dg Lie algebroid [2]. Hence (Γ(M;∧•F),LQ)
is a (+1)-shifted derived Poisson algebra (or a differential Gerstenhaber algebra), where Γ(M;∧•F) =

⊕kΓ(M;∧kF)[k], and LQ = [Q,−] denotes the Lie derivative. Since Γ(M; Λ•F) ∼= Γ(Λ•L∨ ⊗ ŜB∨ ⊗
Λ•B) = ⊕kΓ(Λ•L∨ ⊗ ŜB∨ ⊗ ΛkB)[k], it thus follows that

(Γ(Λ•L∨ ⊗ ŜB∨ ⊗ Λ•B),LQ)

is a (+1)-shifted derived Poisson algebra (or a differential Gerstenhaber algebra).

We need another result:

Proposition 4.7 ([2]). Under the same hypothesis as in Proposition 4.6, there is an induced contraction
datum

(tot Γ(Λ•L∨ ⊗ ŜB∨ ⊗ Λ•B),LQ) (tot Ω•A(Λ•B), dBott
A ).

h̆\

σ\

τ̆\
(22)

The maps h̆\ and τ̆\ are defined by (see [2]):

h̆\ = h\ +
∞∑
i=1

(h\ ◦ L%)ih\,

τ̆\ = τ\ +
∞∑
i=1

(h\ ◦ L%)iτ\.

Remark 4.8. We remark that the above is indeed a semifull algebra contraction, in the sense of Definition
2.11. In fact, as explained in detail in [2, loc. cit.], the contraction (σ\, τ̆\, h̆\) is obtained by applying the
perturbation Lemma 2.10 to a second contraction involving the maps (σ\, τ\, h\). The fact that the latter
contraction is semifull can be shown by a simple direct computation, using Remark 2.12 and the explicit
definition of the maps σ\, τ\, h\ given in [2]. The fact that the contraction (σ\, τ̆\, h̆\) is semifull follows
immediately from Proposition 2.14.

The differential Gerstenhaber algebra (Γ(Λ•L∨⊗ ŜB∨⊗Λ•B),LQ) is, by definition, a degree (+1) derived
Poisson algebra, whose unary bracket is LQ, binary bracket is the Schouten bracket, and all higher brackets
vanishes. By homotopy transfer Theorem 2.15, there is a degree (+1) derived Poisson algebra structure
induced on tot Ω•A(Λ•B), whose first bracket is dBott

A .

Below is our main result in this section.

Proposition 4.9. Let (L,A) be a Lie pair. Choose a splitting of the exact sequence (15), and a torsion freeL-
connection∇ onB that extends theA-module structure ofB. Then the degree (+1) derived Poisson algebra
structure on Ω•A(Λ•B) obtained by homotopy transfer from the one on Γ(Λ•L∨ ⊗ ŜB∨ ⊗ Λ•B), which is
induced from the Fedosov dg Lie algebroid F →M, coincides with the one as in Proposition 4.3.

Note that the construction of a Fedosov manifoldM and its Fedosov dg Lie algebroid F → M depends
on the choice of a torsion free L-connection ∇ on B extending the A-module structure of B. The above



22 RUGGERO BANDIERA, ZHUO CHEN, MATHIEU STIÉNON, AND PING XU

proposition indicates that, however, the degree (+1) derived Poisson algebra structure on Ω•A(Λ•B) obtained
by homotopy transfer from (Γ(M;∧•F),LQ) is independent of the choice of∇.

The rest of this section is devoted to prove this proposition. We need to recall some techniques and facts
that are already shown in [2]. Let us resume the settings and notions in Section 4.1. We chose a splitting of
Sequence (15) so that one treats L = A⊕B directly.

Given a torsion free L-connection∇ on B that extends the A-module structure of B, one can write

∇a+bb
′ = ∇Aa b′ + ∆B

b b
′, ∀a ∈ Γ(A), b, b′ ∈ Γ(B).

Here the ∆B can be thought of as a B-“connection” on B. The condition that ∇ being torsion free means

∆B
b1b2 −∆B

b2b1 = [b1, b2]B, ∀b1, b2 ∈ Γ(B). (23)

Here [−,−]B is the B-“bracket” introduced in Equation (18).

In what follows, let us denote

C(p,q,r) = Γ(ΛpA∨ ⊗ ΛqB∨ ⊗ SrB∨).

RecallM = L[1]⊕B. Hence

C∞(M) = Γ(Λ•L∨ ⊗ ŜB∨) = Γ(Λ•A∨ ⊗ Λ•B∨ ⊗ ŜB∨) =
∏

p,q,r≥0

C(p,q,r).

Recall Equation (20), where we split dL into three components. Abusing notations, let us again write

d∇L = dBott
A + d∆

B + dβ : Γ(Λ•L∨ ⊗ ŜB∨)→ Γ(Λ•+1L∨ ⊗ ŜB∨),

where

dBott
A : C(p,q,r) → C(p+1,q,r),

d∆
B : C(p,q,r) → C(p,q+1,r),

dβ : C(p,q,r) → C(p−1,q+2,r).

All the following are due to the relevant definitions and facts in [2].

• The kernel of σ\ is (C(•,≥1,•) ⊕ C(•,•,≥1))⊗ Γ(Λ•B).
• The map h\ sends C(p,q,r) ⊗ Γ(ΛsB) to C(p,q−1,r+1) ⊗ Γ(ΛsB).
• The map

% = d∇L +X∇

is a degree (+1) derivation ofC∞(M), and in fact a perturbation of the cochain complex (C∞(M),−δ).
Moreover, the map L% satisfies

L%(C(p,q,r) ⊗ Γ(ΛsB)) ⊂ (C(p+1,q,≥r) ⊕ C(p,q+1,≥r) ⊕ C(p−1,q+2,≥r))⊗ Γ(ΛsB).

• The Schouten–Nijenhuis bracket in Γ(Λ•L∨ ⊗ ŜB∨ ⊗ Λ•B) = C(•,•,•) ⊗ Γ(Λ•B) satisfies

[C(p,q,r) ⊗ Γ(ΛsB), C(a,b,c) ⊗ Γ(ΛdB)] ⊂ C(p+a,q+b,r+c−1) ⊗ Γ(Λs+d−1B).

Using these facts, the following formulas can be straightforward verified.

Lemma 4.10. 1) For any b ∈ Γ(B), one has

τ̆\(b) = b+

∞∑
i=1

(h\ ◦ L%)i(b) ≡ b+ h\(d
∆
Bb) mod C(0,0,≥2) ⊗ Γ(B). (24)

Note that h\(d∆
Bb) ∈ C(0,0,1) ⊗ Γ(B).
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2) For any θ ∈ Γ(A∨), one has

τ̆\(θ) = θ +
∞∑
i=1

(h ◦ %)i(θ) ≡ θ + h(d∆
Bθ) + h(dβθ) mod (C(1,0,≥2) ⊕ C(0,1,≥2)). (25)

Note that h(d∆
Bθ) ∈ C(1,0,1) and h(dβθ) ∈ C(0,1,1).

3) For any $ ∈ C(p,q,r) ⊗ Γ(ΛsB), one has

h̆\($) ≡ h\($) mod
⊕

i+j=p+q−1

C(i,j,≥r+2) ⊗ Γ(ΛsB). (26)

Note that h\($) ∈ C(p,q−1,r+1) ⊗ Γ(ΛsB).

An immediate consequence is the following fact.

Lemma 4.11. For any $1, $2 ∈ C(•,•,•) ⊗ Γ(ΛsB), one has

σ\[h̆\($1), h̆\($2)] = 0. (27)

The following identities are due to the definition of h (see [2]). We omit the details of verification.

Lemma 4.12. For all b, b1, b2 ∈ Γ(B), θ ∈ Γ(A∨), we have
ιb1h\(d

∆
Bb2) = ∆B

b1b2,

ιbh(d∆
Bθ) = ∆bθ,

ιb1hιb2h(dβθ) =
1

2
〈β(b1, b2), θ〉 .

Here ∆ is the B-“connection” on A introduced in Equation (17).

We are now able to show the following

Lemma 4.13. For b1, b2 ∈ Γ(B), θ1, θ2 ∈ Γ(A∨) and f ∈ C∞(M), one has
σ\[τ̆\(b1), τ̆\(b2)] = [b1, b2]B,

σ\[τ̆\(b1), τ̆\(θ1)] = ∆b1θ1,

σ\[τ̆\(b1), f ] = ρB(b1)f,

σ\[τ̆\(θ1), τ̆\(θ2)] = 0.

(28)

Proof. By Equation (24), we have

[τ̆\(b1), τ̆\(b2)] ≡ ιb1h\(d
∆
Bb2)− ιb2h\(d∆

Bb1) mod C(0,0,≥1) ⊗ Γ(B)

≡ ∆B
b1b2 −∆B

b2b1 mod C(0,0,≥1) ⊗ Γ(B)

≡ [b1, b2]B mod C(0,0,≥1) ⊗ Γ(B). (29)
The last step is due to ∇ being torsion free (Equation (23)). Applying σ\, the first identity in Equation (28)
is immediate.
Similarly, by Equations (24) and (25),

[τ̆\(b), τ̆\(θ)] ≡ ιbh(d∆
Bθ) + ιbh(dβθ) mod (C(1,0,≥1) ⊕ C(0,1,≥1))

≡ ∆bθ + ιbh(dβθ) mod (C(1,0,≥1) ⊕ C(0,1,≥1)). (30)

Notice that ιbh(dβθ) ∈ C(0,1,0). Then applying σ\, the second identity in Equation (28) is immediate.
The third identity easily follows from Equation (24):

[τ̆\(b1), f ] ≡ ρB(b1)f mod C(0,0,≥1).

The last identity is obvious. �
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Lemma 4.14. For b, b1, b2, b3 ∈ Γ(B) and θ, θ1, θ2, θ3 ∈ Γ(A∨), one has

σ\
[
τ̆\(b1), h̆\[τ̆\(b2), τ̆\(θ)]

]
= 1

2 〈β(b1, b2), θ〉 ,
σ\
[
τ̆\(θ), h̆\[τ̆\(b1), τ̆\(b2)]

]
= 0,

σ\
[
τ̆\(b1), h̆\[τ̆\(b2), τ̆\(b3)]

]
= 0,

σ\
[
τ̆\(b), h̆\[τ̆\(θ1), τ̆\(θ2)]

]
= 0,

σ\
[
τ̆\(θ1), h̆\[τ̆\(θ2), τ̆\(b)]

]
= 0,

σ\
[
τ̆\(θ1), h̆\[τ̆\(θ2), τ̆\(θ3)]

]
= 0.

(31)

Proof. We show the first identity in (31). By Equations (30) and (26), we have

h̆\[τ̆\(b2), τ̆\(θ)] ≡ hιb2h(dβθ) mod C(0,0,≥2),

where hιb2h(dβθ) ∈ C(0,0,1).

Therefore, using Equation (24), we get[
τ̆\(b1), h̆\[τ̆\(b2), τ̆\(θ)]

]
≡ ιb1hιb2h(dβθ) mod C(0,0,≥1)

≡ 1

2
〈β(b1, b2), θ〉 mod C(0,0,≥1).

Applying σ\, one gets the first identity. The remaining identities can be worked out similarly. �

The following lemma is proved along the same lines.

Lemma 4.15. The following equation holds for any x, y, z ∈ Γ(B) or Γ(A∨):

h̆\
[
τ̆\(x), h̆\[τ̆\(y), τ̆\(z)]

]
= 0. (32)

With these preparatory work, we finally give the proof of our main result — Proposition 4.9.

Proof of Proposition 4.9. Via the contraction data (h̆\, σ\, τ̆\) in Equation (22), one constructs the L∞ brack-
ets on tot Ω•A(Λ•B) (Theorem 2.15). The first one is already shown to be dBott

A .

According to the proof of Theorem 2.15, the binary bracket reads

l2(X,Y ) = σ\[τ̆\(X), τ̆\(Y )], ∀X,Y ∈ tot Ω•A(Λ•B).

Compare the identities in Equation (28) with those in (2) of Proposition 4.3, we see the generating relations
of the binary bracket are exact the same.

The ternary bracket reads

l3(X,Y, Z) = σ\
[
τ̆\(X), h̆\[τ̆\(Y ), τ̆\(Z)]

]
+ c.p.

Let us examine the ternary bracket on generating elements. For b1, b2 ∈ Γ(B) and θ ∈ Γ(A∨), we have

l3(b1, b2, θ)

= σ\

([
τ̆\(b1), h̆\[τ̆\(b2), τ̆\(θ)]−

[
τ̆\(b2), h̆\[τ̆\(b1), τ̆\(θ)] +

[
τ̆\(θ), h̆\[τ̆\(b1), τ̆\(b2)]

])
=

1

2
〈β(b1, b2), θ〉 − 1

2
〈β(b2, b1), θ〉 ( by Equation (31))

= 〈β(b1, b2), θ〉 .

For the same reasons, one sees that l3 vanishes if restricted to Γ(B)×Γ(B)×Γ(B), Γ(B)×Γ(A∨)×Γ(A∨)
and Γ(A∨)×Γ(A∨)×Γ(A∨). So, the generating relations of the ternary bracket are exact the same as those
in (3) of Proposition 4.3.
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The 4th-bracket reads

l4(X,Y, Z,W )

= λσ\
[
h̆\[τ̆\(X), τ̆\(Y )], h̆\[τ̆\(Z), τ̆\(W )]

]
+ c.p.

+µσ\
[
τ̆\(X), h̆\

[
τ̆\(Y ), h̆\[τ̆\(Z), τ̆\(W )]

]]
+ c.p.

where λ, µ are two constants. By Equations (27) and (32), we see that l4 vanishes if restricted to generating
elements in Γ(B) or Γ(A∨). Hence l4 is trivial. It can be similarly verified that all higher brackets lj (j ≥ 5)
are trivial.

This completes the proof. �

4.3. Third construction: Dirac deformation and proof of main theorems. Deformation of Dirac struc-
tures has been studied at least 15 years ago by Severa [50] and Roytenberg [44]. It is well known that the
deformation is controlled by anL∞ algebra, which is canonical up toL∞ isomorphisms. In fact, it is a degree
(−1) derived Poisson algebra. Let us recall the construction below.

Let E be a Courant algebroid of signature (n, n) over a smooth manifoldM , and D ⊂ E a Dirac structure.
Choose a transversal almost Dirac (i.e. maximal isotropic) subbundle C ⊂ E such that E ∼= D⊕C. Identify
C with D∨. Then we have E ∼= D ⊕D∨.
The Courant bracket [−,−]E on Γ(E) and the anchor map ρE : E → TM induce, by restrictions, a skew-
symmetric bracket [−,−]D∨ on Γ(D∨) and an anchor map ρ∨ : D∨ → TM ,

[ξ, η]D∨ = prD∨ [ξ, η]E , ∀ξ, η ∈ Γ(D∨),

ρ∨ = ρE |D∨ .

Let φ ∈ Γ(Λ3D) be the section defined by

φ(ξ, η, ζ) = 2 〈[ξ, η]E , ζ〉E = 2 〈prD[ξ, η]E , ζ〉E , ∀ξ, η, ζ ∈ Γ(D∨).

Here 〈−,−〉E is the symmetric metric on E. It can be easily verified that φ is indeed skew-symmetric.

Unless C ∼= D∨ is again a Dirac structure, in general φ is non-zero and
(
D∨, [−,−]D∨ , ρ∨

)
is not a Lie

algebroid. Instead, (D,D∨) forms a quasi-Lie bialgebroid [44].

Consider the graded algebra Γ(Λ•D∨) = ⊕k=0Γ(∧kD∨)[−k], whose degree n-part is Γ(ΛnD∨), for n ≥ 0.
Let

λ1 = dD : Γ(ΛiD∨)→ Γ(Λi+1D∨)

be the Chevalley–Eilenberg differential of the Lie algebroid D.

Define a binary bracket
λ2 : Γ(ΛiD∨)⊗ Γ(ΛlD∨)→ Γ(Λi+l−1D∨)

by extending, using Leibniz rule (see Equation (1), for n = 2, k = −1), the relation

λ2(ξ, η) = [ξ, η]D∨ , λ2(ξ, f) = ρ∨(ξ)(f), ∀ξ, η ∈ Γ(D∨), f ∈ C∞(M).

Similarly, let
λ3 : Γ(ΛiD∨)⊗ Γ(ΛlD∨)⊗ Γ(ΛrD∨)→ Γ(Λi+l+r−3D∨)

be the ternary bracket extending φ, by Leibniz rule, in each argument (λ3 vanishes if one of the argument is
a function onM ).

The following result is due to Severa [50] and Roytenberg [44]. Relevant results appeared in [23] and more
recently in [15].

Proposition 4.16. Let E be a Courant algebroid of signature (n, n) over a smooth manifoldM , andD ⊂ E
a Dirac structure. Choose a transversal almost Dirac structure C. Then
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• Γ(Λ•D∨), together with λ1, λ2, λ3 defined above and λl = 0, l > 3, and the wedge product, is a
degree (−1) derived Poisson algebra.
• The underlying L∞ algebra structure on Γ(Λ•D∨)[1] controls deformations of the Dirac structures
D ⊂ E in the following sense: the graph {X+ωb(X)|X ∈ D} ⊂ E of an element ω ∈ Γ(Λ2D∨)[1]
is a Dirac structure if and only if ω satisfies the Maurer–Cartan equation:

λ1(ω) +
1

2
λ2(ω, ω) +

1

6
λ3(ω, ω, ω) = 0.

In fact, such a degree (−1) derived Poisson algebra structure on Γ(Λ•D∨) is canonical, up to isomorphisms.
Note that there is a one-one correspondence between almost Dirac structures transversal to D and elements
in Γ(Λ2D). Their relation is established as follows:

π ∈ Γ(Λ2D) ↔ Cπ =
{
π](ξ) + ξ|ξ ∈ C ∼= D∨

}
.

Proposition 4.17 ([49]). Under the same hypothesis as in Proposition 4.16, assume thatCπ is another almost
Dirac structure transversal to D, which corresponds to an element π ∈ Γ(Λ2D). Then the (−1) derived
Poisson algebra structures on Γ(Λ•D∨) induced from C and Cπ are isomorphic. The isomorphism is given
by exp δπ, where δπ is a coderivation on S(Γ(Λ•D∨)[2] generated by

S2
(
Γ(Λ•D∨)

)
→ Γ(Λ•D∨)

ξ ⊗ η 7→ ιπ(ξ) ∧ η + ξ ∧ ιπ(η)− ιπ(ξ ∧ η). (33)

Note that the bilinear map in Equation (33) is a biderivation of the graded commutative algebra Γ(Λ•D∨)
with respect to the wedge product. Therefore exp δπ is indeed compatible with respect to the associative
algebra structure, according to Proposition 2.8.

Now consider a Lie pair (L,A). Let E = L⊕L∨ be the standard Courant algebroid [32], where the Courant
bracket and the anchor map are defined, respectively, by

[X + α, Y + β]E = [X,Y ]L + (LXβ − ιY dLα),

ρE(X + α) = ρL(X),

∀X + α, Y + β ∈ Γ(L⊕ L∨). The symmetric pairing is:

〈X + α, Y + β〉E =
1

2
(〈X,β〉+ 〈Y, α〉).

It is a standard result thatD = A⊕A⊥ is a Dirac structure ofE [32]. Choose a splitting of the exact sequence
(15) so that L ∼= A⊕B. ThenA⊥ ∼= B∨ andB⊕A∨ is a transversal almost Dirac structure ofD in E. That
is

E ∼= (A⊕B∨)⊕ (B ⊕A∨) ∼= D ⊕D∨

with D ∼= A⊕ B∨ and D∨ ∼= B ⊕ A∨. Thus (D,D∨) is a quasi-Lie bialgebroid, and the induced structure
maps on D∨ are, respectively, given by the following relations:

1) The bracket [−,−]D∨ reads

[u+ θ, v + ω]D∨ = prD∨
(
[u, v]L + (Luω − ιvdLθ)

)
= prB[u, v]L + prA∨(Luω − Lvθ),

where u+ θ, v + ω ∈ Γ(D∨) = Γ(B ⊕A∨).
2) The anchor ρ∨ is simply

ρ∨(u+ θ) = ρL(u).
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3) The 3-form φ on D∨ is:

φ(u1 + θ1, u2 + θ2, u3 + θ3) = 2 〈prD[u1 + θ1, u2 + θ2]E , u3 + θ3〉E
= 2 〈prA[u1, u2]L + prB∨(Lu1θ2 − Lu2θ1), u3 + θ3〉E
= 〈prA[u1, u2]L, θ3〉+ 〈Lu1θ2, u3〉 − 〈Lu2θ1, u3〉
= 〈prA[u1, u2]L, θ3〉+ 〈prA[u3, u1]L, θ2〉+ 〈prA[u2, u3]L, θ1〉 ,

∀ui ∈ B, θi ∈ A∨, i = 1, 2, 3.

The above generating relations determine a degree (−1) derived Poisson algebra structure on

Γ(Λ•D∨) ∼= Γ(Λ•(B ⊕A∨)) ∼= ⊕k=0,l=0Ωk
A(ΛlB)[−k − l].

In order to be consistent with the degree convention in Section 4.1 and Section 4.2, we now redesignate the
degrees so that the subspace Ωk

A(ΛlB) is of degree (k − l). In this way, we obtain the same (+1) derived
Poisson algebra on tot Ω•A(Λ•B)Ωk

A(ΛlB)[−k + l] as in Proposition 4.3, since they have exactly the same
generating relations.

In summary, we have proved the following

Proposition 4.18. Let (L,A) be a Lie pair, and E = L⊕ L∨ the standard Courant algebroid associated to
the Lie algebroid L [32]. Consider the Dirac structure D = A⊕A⊥ ∼= A⊕B∨. Then

(1) A splitting of the exact sequence (15) determines an almost Dirac structure B ⊕ A∨ transversal to
D.

(2) The degree (+1) derived Poisson algebra tot Ω•A(Λ•B) corresponding to the transversal almost
Dirac structure B ⊕A∨ as in Proposition 4.16 coincides with the one as in Proposition 4.3.

Proof of Theorem 1.1 and Theorem 1.2. According to Proposition 4.17 and Proposition 4.18, the degree (+1)
derived Poisson algebra tot Ω•A(Λ•B) induced from Proposition 4.16, the one as in Proposition 4.3, and the
one as in Proposition 4.9 all coincide, and is canonical up to derived Poisson algebra isomorphisms with the
linear map being the identity. As a consequence, the induced degree (+1) Poisson algebra, or a Gerstenhaber
algebra, on the level of cohomology H(Ω•A(Λ•B), dBott

A ), is indeed canonical. �

4.4. Examples.

4.4.1. Matched pairs of Lie algebroids. Let L be a Lie algebroid, A and B two Lie subalgebroids of L such
that L ∼= A ⊕ B as vector bundles. Then L/A ∼= B is naturally an A-module, while L/B ∼= A is naturally
a B-module. Then (A,B) is said to form a matched pair. Alternatively, one can define a matched pair as
follows.

Definition 4.19 ([33, 35, 37]). Lie algebroids A and B over the same base manifold M are said to form a
matched pair if there exists an action∇ of A on B and an action ∆ of B on A, such that the identities

[ρA(X), ρB(Y )] = −ρA
(
∆YX

)
+ ρB

(
∇XY

)
,

∇X [Y1, Y2] = [∇XY1, Y2] + [Y1,∇XY2] +∇∆Y2
XY1 −∇∆Y1

XY2,

∆Y [X1, X2] = [∆YX1, X2] + [X1,∆YX2] + ∆∇X2
YX1 −∆∇X1

YX2

hold for allX1, X2, X ∈ Γ(A) and Y1, Y2, Y ∈ Γ(B). Here ρA and ρB denote the anchor maps of A and B
respectively.

Given a matched pair (A,B) of Lie algebroids, there is a Lie algebroid structure on the direct sum vector
bundle L = A⊕B, with anchor

X ⊕ Y 7→ ρA(X) + ρB(Y )
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and the Lie bracket
[X1 ⊕ Y1, X2 ⊕ Y2] =

(
[X1, X2] + ∆Y1X2 −∆Y2X1

)
⊕
(

[Y1, Y2] +∇X1Y2 −∇X2Y1

)
.

Clearly, the pair (L,A) is a Lie pair, and the Bott A-connection on L/A ∼= B coincides with ∇. Applying
Proposition 4.3, we see that the ternary bracket vanishes, and tot Ω•A(Λ•B) is in fact a dgla.
Theorem 4.20. For any given matched pair (A,B) of Lie algebroids, tot Ω•A(Λ•B) admits a canonical dif-
ferential Gerstenhaber algebra structure2, where the multiplication is the wedge product, and the differential
is the Chevalley–Eilenberg differential

d∇A : Ω•A(Λ•B)→ Ω•+1
A (Λ•B).

Here the A-module structure on Λ•B is the natural extension of the A-action on B.
Theorem 4.21. For any given matched pair (A,B) of Lie algebroids, the Chevalley–Eilenberg hypercoho-
mology H(Ω•A(Λ•B), d∇A) admits a canonical Gerstenhaber algebra structure.

As an application, consider a complex manifold X . Set A = T 0,1
X and B = T 1,0

X . Then (A,B) is a matched
pair of Lie algebroids over C, and its direct sum A ./ B is isomorphic, as a Lie algebroid, to TX ⊗ C. It is
simple to see that tot Ω•A(Λ•B) = tot Ω0,•

X (T •,0X ), the differential d∇A is the standard ∂̄-operator, and the Lie
bracket d−,−e is the Schouten bracket. Therefore, tot(Ω0,•

X (T •,0X ),∧, d−,−e, ∂̄) is a differential Gersten-
haber algebra. The corresponding hypercohomology is isomorphic to the sheaf cohomology H(X,Λ•Θ) of
holomorphic polyvector fields. The Gerstenhaber algebra structure in Theorem 4.21 becomes the standard
Gerstenhaber algebra structure on H(X,Λ•Θ).
Another example of matched pairs arises from g-manifolds. Let g be a Lie algebra, M a g-manifold with
infinitesimal action φ : g → X (M). Let A = M o g be the associated action Lie algebroid and B = TM .
Then A and B form a Lie algebroid matched pair, with mutual actions

∇aY = [φ(a), Y ], ∆Y a = 0,

where a ∈ g is considered as a constant section in A, and Y ∈ X (M). It is clear that tot Ω•A(Λ•B) ∼=
tot Λ•g∨ ⊗X •

poly(M), and d∇A is the standard Chevalley–Eilenberg differential, and the Lie bracket d−,−e
is the extension of the Schouten bracket. Hence tot Λ•g∨⊗X •

poly(M) is a differential Gerstenhaber algebra
and its hypercohomology HCE(g,X •

poly(M)) is a Gerstenhaber algebra. See [31, Lemma 3.1].

4.4.2. Semisimple Lie algebras. Let g be a complex semisimple Lie algebra, and h a Cartan subalgebra in g.
Let g = h ⊕

⊕
α∈∆ gα be its root decomposition, where ∆ ⊂ h∨ is the root system of g. It is standard that

there exist hα ∈ h and xα ∈ gα, such that
[hα, xα] = 2xα, [hα, x−α] = −2x−α, [xα, x−α] = hα,

for all α ∈ ∆+.
Consider the Lie pair (g, h). Applying Theorems 1.1 and 1.2, we have the following
Theorem 4.22. Let g be a complex semisimple Lie algebra with the root decomposition g = h⊕

⊕
α∈∆ gα.

Then tot Λ•h∨⊗Λ•(⊕α∈∆gα) admits a canonical degree (+1) derived Poisson algebra structure, where the
multiplication is the wedge product, and the shifted L∞-brackets are given as follows:

(1) The unary bracket is the Chevalley–Eilenberg differential
dh : Λ•h∨ ⊗ Λ•(⊕α∈∆gα)→ Λ•+1h∨ ⊗ Λ•(⊕α∈∆gα).

Here the h-module structure on Λ•(⊕α∈∆gα) is the natural extension of the h-action on ⊕α∈∆gα.

2This means that the differential d∇A is compatible with the Gerstenhaber bracket:

d∇A{X,Y } = {d∇AX,Y }+ (−1)|X|+1{X, d∇AY }, ∀X,Y ∈ Ω•A(Λ•B).
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(2) The binary bracket {−,−}2 is generated by
{xα, xβ}2 = cα,βxα+β, ∀α, β ∈ ∆, α+ β ∈ ∆.

Here cα,β is the standard structure constant (see [22, Chapter VII]).
(3) The ternary bracket {−,−,−}3 is generated by

{xα, x−α, ξ}3 = 〈hα, ξ〉 , ∀ξ ∈ h∨,

with all other situations being trivial.
(4) All higher brackets vanish.

Theorem 4.23. Let g = h ⊕
⊕

α∈∆ gα be a complex semisimple Lie algebra, the Chevalley–Eilenberg
hypercohomology H(Λ•h∨ ⊗ Λ•(⊕α∈∆gα), dh) admits a canonical Gerstenhaber algebra structure.

4.4.3. Transitive Lie algebroids. Let (L, [−,−]L, ρL) be a transitive Lie algebroid overM , i.e. ρL : L→ TM
is surjective. Let K = ker ρL be the adjoint bundle of L, which is a Lie algebra bundle overM . Then (L,K)
is a Lie pair. The quotient L/K ∼= TM has the trivial K-module structure.
FollowingMackenzie [34], a connection is a bundle map γ : TM → L such that ρL◦γ = idTM . A connection
always exists. The curvature of γ is the bundle map R : ∧2TM → K:

R(X,Y ) = [γ(X), γ(Y )]L − γ[X,Y ], ∀X,Y ∈X (M).

There also induces a TM -connection on K defined by
∇Xu = [γ(X), u]L, ∀X ∈X (M), u ∈ Γ(K).

By choosing such a connection,L can be identified withK⊕TM as a vector bundle overM . The Lie algebroid
structure on L can be described as follows: the anchor is the projection to the second component, and the Lie
bracket is

[(u,X), (v, Y )]L = (R(X,Y ) + [u, v]K +∇Xv −∇Y u, [X,Y ]), ∀u, v ∈ Γ(K), X, Y ∈X (M).

Now for the Lie pair (L,K), by Proposition 4.3, Theorems 1.1 and 1.2, we have

Theorem 4.24. Let L be a transitive Lie algebroid over M with anchor ρL, and K = ker ρL. Then, up
to degree (+1) derived Poisson algebra isomorphisms whose first Taylor coefficient is the identity map,
Γ(Λ•K∨ ⊗ X •

poly(M)) admits a unique degree (+1) derived Poisson algebra structure, where the multi-
plication is the wedge product, and shifted L∞ brackets are given as follows:

(1) The unary bracket
d : Γ(Λ•K∨ ⊗X •

poly(M))→ Γ(Λ•+1K∨ ⊗X •
poly(M))

is equal to dK⊗ 1, where dK : Γ(Λ•K∨)→ Γ(Λ•+1K∨) is the Chevalley–Eilenberg differential of K.
(2) The binary bracket is generated by the following relations:

{X,Y }2 = [X,Y ],

{X,ω}2 = ∇Xω,
{ω, η}2 = 0,

∀X,Y ∈X (M), ω, η ∈ Γ(K∨).
(3) The ternary bracket is generated by the following relations:

{X,Y, ω}3 = 〈Rγ(X,Y ), ω〉 , ∀X,Y ∈X (M), ω ∈ Γ(K∨),

and otherwise vanishes.
(4) All the higher brackets vanish.

Theorem 4.25. Under the same hypothesis as in Theorem 4.24, the space HCE

(
K,X •

poly(M)
)
admits a

canonical Gerstenhaber algebra structure.
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4.4.4. Foliations. Consider a regular foliation F on a smooth manifold M . Then (TM , TF ) is a Lie pair,
where TF is the integrable distribution corresponding to F . Let NF = TM/TF be the associated normal
bundle. Applying Theorems 1.1 and 1.2, we have

Theorem 4.26. Let F be a regular foliation onM . Then, up to degree (+1) derived Poisson algebra isomor-
phisms whose first Taylor coefficient is the identity map, tot Γ(Λ•T∨F ⊗ Λ•NF ) admits a canonical degree
(+1) derived Poisson algebra structure, where the multiplication is the wedge product, and the shifted L∞
brackets are given as follows:

(1) The unary bracket is the leafwise de Rham differential

dFdR : Γ(Λ•T∨F ⊗ Λ•NF )→ Γ(Λ•+1T∨F ⊗ Λ•NF ).

(2) Choose a complementary subbundle to TF in TM so that TM ∼= TF ⊕NF . The binary bracket

{−,−}2 : Γ(ΛiT∨F ⊗ ΛjNF )× Γ(ΛpT∨F ⊗ ΛlNF )→ Γ(Λi+pT∨F ⊗ Λj+l−1NF )

is generated by the following relations:
a) {u, v}2 = prNF [u, v], ∀u, v ∈ Γ(NF );
b) {u, ω}2 = prT∨F (Luω), ∀u ∈ Γ(NF ), ω ∈ Γ(T∨F );
c) {u, f}2 = u(f), ∀u ∈ Γ(NF ), f ∈ C∞(M);
d) {ω1, ω2}2 = 0, ∀ω1, ω2 ∈ Γ(Λ•T∨F ).

(3) The ternary bracket

{−,−,−}3 : Γ(ΛiT∨F ⊗ΛjNF )×Γ(ΛpT∨F ⊗ΛlNF )×Γ(ΛrT∨F ⊗ΛsNF )→ Γ(Λi+p+r−1T∨F ⊗Λj+l+s−2NF )

is C∞(M)-linear in each entry and generated by the following relations:
a) {−,−,−}3 vanishes when being restricted to Γ(NF ) × Γ(NF ) × Γ(NF ), Γ(NF ) × Γ(T∨F ) ×

Γ(T∨F ), and Γ(T∨F )× Γ(T∨F )× Γ(T∨F );
b) {u, v, ω}3 =

〈
prTF [u, v], ω

〉
, for all u, v ∈ Γ(NF ) and ω ∈ Γ(T∨F ).

(4) All the rest of higher brackets vanish.

Theorem 4.27. Let F be a regular foliation onM . The leafwise de Rham hypercohomologyHdR(F,Λ•NF )
admits a canonical Gerstenhaber algebra structure.

Remark 4.28. According to Proposition 4.1, a choice of a complementary subbundle to TF in TM induces an
L∞ algebroid structure on TF [1]⊕NF → TF [1]. In terms of purely algebraic term, this amounts to saying
that the pair (Γ(Λ•T∨F ),Γ(Λ•T∨F ⊗NF )) is an LR∞ algebra. This result is due to Vitagliano [52].

Appendix A. L∞ algebroids and dg manifolds

We recall some standard notions and results which we used throughout the paper. We mainly follow the
conventions of Bruce [8], Voronov [55], and Lada–Markl [28].

The following proposition reveals a close relation between L∞ algebroids and dg manifolds. See [8, 25].

Proposition A.1. Let L →M be a vector bundle of Z-graded manifolds. Then L is an L∞ algebroid if and
only if L[1] is a dg manifold whose homological vector field Q is tangent to the zero sectionM 0

↪−→ L[1].

The rest of the section is devoted to the proof of this proposition, where the set-up was used in the paper. We
first start with the following

Lemma A.2. Let L → M be a vector bundle of Z-graded manifolds, and let k be a fixed integer. An L∞
algebroid structure on L → M is equivalent to an L∞ algebra structure on the K-vector space Γ(L) ⊕
C∞(M)[k] with structure maps

λl : Λl
(
Γ(L)⊕ C∞(M)[k]

)
→
(
Γ(L)⊕ C∞(M)[k]

)
[2− l]
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satisfying the Leibniz rule

λl(w1, w2, · · · , wl−1, fwl) = λl(w1, w2, · · · , wl−1, f)wl

+ (−1)(l+|w1|+···+|wl−1|)|f |fλl(w1, w2, · · · , wl−1, wl), (34)

for all w1, · · · , wl ∈ Γ(L)⊕ C∞(M)[k], and f ∈ C∞(M), and the following conditions:

(1) Γ(L) is an L∞ subalgebra of Γ(L)⊕ C∞(M)[k];
(2) C∞(M)[k] is an L∞ ideal of Γ(L)⊕C∞(M)[k], i.e. λl(w1, w2, · · · , wl) ∈ C∞(M)[k] if at least

one of the arguments w1, w2, . . . , wl is in C∞(M)[k]; and
(3) C∞(M)[k] is abelian, i.e. λl(w1, w2, · · · , wl) = 0 if at least two of the arguments w1, w2, . . . , wl

are in C∞(M)[k].

Proof. Assume that L is an L∞ algebroid with multi-brackets (λl)l≥1 and multi-anchor maps (ρl)l≥0 as in
Definition 3.6. Define a sequence (λl)l≥1 of K-multilinear maps

λl : Λl
(
Γ(L)⊕ C∞(M)[k]

)
→
(
Γ(L)⊕ C∞(M)[k]

)
[2− l]

by the following relations:

• λl(x1, · · · , xl) = 0 if at least two of the arguments x1, . . . , xl are in C∞(M)[k];
• λl(a1, · · · , al) = λl(a1, · · · , al), for all a1, · · · , al ∈ Γ(L); and
• λl+1(a1, · · · , al, f) = ρl(a1, · · · , al)f , for all a1, · · · , al ∈ Γ(L) and f ∈ C∞(M)[k].

It is straightforward to verify that (λl)l≥1 satisfy all the required properties.
The converse can be proved by going backwards. �

Given a vector bundle E π−→M of Z-graded manifolds, consider the graded Lie algebra D61(E) of first-order
differential operators on E . It can be identified to X (E) ⊕ C∞(E) in a canonical way. Since C∞(E) ∼=
Γ(Ŝ(E∨)), the contraction operator ιs by a section s ∈ Γ(E) defines a derivation of C∞(E), i.e. a vector field
on E . The inclusionΓ(E)⊕C∞(M) ↪→X (E)⊕C∞(E) sending s+f to ιs+π∗(f) embedsΓ(E)⊕C∞(M)
into an abelian Lie subalgebra ofD61(E). We proceed to define a projectionP : D61(E)� Γ(E)⊕C∞(M).
Given a vector field X ∈X (E), consider the composition

Γ(E∨) ↪→ Γ(Ŝ(E∨)) ∼= C∞(E)
X−→ C∞(E)

0∗−→ C∞(M),

where 0∗ denotes the pullback of functions through the zero section of the vector bundleM 0
↪−→ L. There

exists a unique X↑ ∈ Γ(E) such that
〈
ξ,X↑

〉
= 0∗

(
X(ξ)

)
, for all ξ ∈ Γ(E∨). Define P : D61(E) �

Γ(E)⊕C∞(M) by P (X + f) = X↑ + 0∗(f), for allX ∈X (E) and f ∈ C∞(E). Note that the projection
operator P satisfies

P
(

[x, y]
)

= P
(

[P (x), y] + [x, P (y)]
)
, ∀x, y ∈ D61(E). (35)

The following lemma is easily verified, and is left to the reader.

Lemma A.3. For any Q ∈X (E), the following assertions are equivalent.

(1) The vector field Q is tangent to the zero section of E π−→M.
(2) There exists a unique vector field Ξ onM such that the diagram

C∞(E) C∞(E)

C∞(M) C∞(M)

Q

0∗ 0∗

Ξ

commutes.
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(3) The ideal ker(0∗) of C∞(E) is Q-stable.
(4) Q ∈ ker(P )

Proof of Proposition A.1. Consider the vector bundle E π−→ M of Z-graded manifolds, where E = L[1].
Assume that Q is a homological vector field on L[1] tangent to the zero section of L[1]

π−→M. According to
Lemma A.3, we have Q ∈ ker(P ).

The graded Lie algebra A = D61(L[1]), its abelian Lie subalgebra a = Γ(L[1]) ⊕ C∞(M), the projection
P : A→ a of D61(L[1]) onto Γ(L[1])⊕C∞(M), and together with the vector field Q ∈ ker(P ) constitute
an L∞[1] algebra Voronov data [55, Theorem 1 and Corollary 1]. The multibrackets (µl)l≥1 are given by a
sequence of derived brackets:

µl(z1, z2, · · · , zl) = P
(

[[[[Q, z1] , z2] , · · · ] , zl]
)
, (36)

for all z1, z2, . . . , zl ∈ Γ(L[1])⊕ C∞(M).

Applying the décalage isomorphism, we obtain an L∞ algebra on Γ(L) ⊕ C∞(M)[−1] with multibrackets
(λl)l≥1. The multibrackets (µl)l≥1 and (λl)l≥1 are related as follows:

λl(w1, w2, · · · , wl) = (−1)?µl(w1, w2, · · · , wl),
where ? = (l−1) |w1|+(l−2) |w2|+· · ·+|wl−1| for all homogeneousw1, w2, . . . , wl ∈ Γ(L)⊕C∞(M)[−1].

It is straightforward to verify that the L∞ algebra structure (λl)l≥1 on Γ(L)⊕C∞(M)[−1] satisfies the four
conditions listed in Lemma A.2. Therefore, L →M is an L∞ algebroid. Its multi-anchor maps ρl : ΛlL →
TM (with l ≥ 0) and multi-brackets λl : ΛlΓ(L)→ Γ(L) (with l ≥ 1) are defined by the relations:

ρl(a1, a2, · · · , al)f = (−1)[0∗
(

[[[[Q, ιa1 ] , ιa2 ] , · · · ] , ιal ] (π∗f)
)
, (37)

where [ = l |a1|+ (l − 1) |a2|+ · · ·+ |al| and

〈λl(a1, a2, · · · , al), ξ〉 = (−1)]0∗
(

[[[[Q, ιa1 ] , ιa2 ] , · · · ] , ιal ] (ξ)
)

(38)

where ] = (l−1) |a1|+(l−2) |a2|+ · · ·+ |al−1| for all ξ ∈ Γ(L∨), a1, a2, . . . , al ∈ Γ(L) and f ∈ C∞(M).

Conversely, given an L∞ algebroid L → M with multi-anchors (ρl)l≥0 and multibrackets (λl)l≥1, one can
recover the corresponding homological vector field Q on L[1] satisfying the desired properties.

The algebra C∞(L[1]) admits the direct product decomposition

C∞(L[1]) =

∞∏
k=0

Γ(Sk(L∨[−1])).

We will refer to Γ(Sk(L∨[−1])) as the weight k component of C∞(L[1]). Note that π∗C∞(M) (the com-
ponent of weight 0) and Γ(L∨[−1]) (the component of weight 1) generate the associative algebra C∞(L[1]).
A vector field Q on L[1] is necessarily of the form Q =

∑∞
l=−1Dl, where Dl is a derivation on C∞(L[1])

of weight l:
Dl : Γ(Ŝ•(L∨[−1]))→ Γ(Ŝ•+l(L∨[−1])).

Since Q is tangent toM, i.e. we want Q ∈ ker(P ), its weight (−1) component D−1 must vanish. Choose a
local coordinate chart (xj)j∈J onM; a local frame (sk)k∈K for L[1]; and the dual local frame (ξk)k∈K for
L∨[−1], the derivation Dl can be written as

Dl =
1

l!

∑
j∈J

ξil · · · ξi2ξi1π∗(Q̃ji1,i2,··· ,il)
∂

∂xj
+

1

(l + 1)!

∑
k∈K

ξil · · · ξi1ξi0π∗(Qki0,i1,··· ,il)
∂

∂ξk
,

where

Q̃ji1,i2,··· ,il = (−1)�ρl(si1 , si2 , · · · , sil)xj
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with � = (l − 1) |si1 |+ (l − 2) |si2 |+ · · ·+
∣∣sil−1

∣∣, and
Qki0,i1,··· ,il = (−1)†

〈
λl+1(si0 , si1 , · · · , sil), ξ

k
〉

with † = (l+1) |si0 |+ l |si1 |+ · · ·+ |sil |. One checks thatDl, and thereforeQ, is well defined. In summary,
the multi-anchors and multi-brackets of the L∞ algebroid L → M determine through Equations (37) and
(38) a vector field Q of degree +1 on L[1], which is tangent to the zero sectionM.

The L∞[1] algebra structure (µl)l≥1 on Γ(L[1]) ⊕ C∞(M) determined by the L∞ algebroid L → M as
per Lemma A.2 is related to the vector field Q through Equation (36). It follows from the generalized Jacobi
identity, Equation (36), and repetitive use of Equation (35) that

0 =
∑

p+r=l+1

(µp ◦ µr)(z1, · · · , zl) = P
(

[[[[[Q,Q] , z1] , z2] , · · · ] , zl]
)
,

for all z1, z2, . . . , zl ∈ Γ(L[1])⊕ C∞(M). Therefore [Q,Q] = 0, i.e. Q is homological. �

Appendix B. Shifted Poisson algebras

Definition B.1. A degree k Poisson algebra is a Z-graded commutative and associative algebra R with a
degree k Poisson bracket, denoted by [−,−] (i.e. [Ri,Rj ] ⊂ Ri+j+k), satisfying

(1) [a, b] = −(−1)|a|
[k]|b|[k] [b, a],

(2) [a, [b, c]] = [[a, b], c] + (−1)|a|
[k]|b|[k] [b, [a, c]],

(3) [a, bc] = [a, b]c+ (−1)|a|
[k]|b|b[a, c],

for all homogeneous elements a, b, c ∈ R.

Note that Conditions (1) and (2) are equivalent to thatR[−k] is a Z-graded Lie algebra, while (3) means that
the Lie bracket is a biderivation.

Also note that degree 0 Poisson algebras are usual Poisson algebras, and degree (+1) Poisson algebras are
Gerstenhaber algebras. In the meantime, one can obtain a Poisson algebra of degree k out of a graded Lie
algebra as indicated in the following

Proposition B.2. Let g be a graded Lie algebra. Then the symmetric product S(g[k]) (similarly Ŝ(g[k]))
admits a unique degree k Poisson algebra structure which extends the original Lie bracket on g.

Appendix C. Shifted polyvector fields

LetM be a Z-graded manifold. A degree l vector field X ∈ X (M) is a derivation C∞(M)
X−→ C∞(M)

of degree l. The degree of X is denoted by |X| = l.

The commutator in X (M) is standard:

[X,Y ] = X ◦ Y − (−1)|X||Y |Y ◦X,
for all homogeneous X,Y ∈ X (M). It is obvious that X (M) is a left C∞(M)-module, and the pair
(X (M), C∞(M)) forms a Z-graded Lie–Rinehart algebra.

Let n ∈ Z be a fixed integer. Following Pridham [39, 40], let X 0
poly(M, n) = C∞(M), and for eachm ≥ 1,

X m
poly(M, n) = SmC∞(M)

(
Γ(M;TM[n+ 1]

)
.

Elements in X m
poly(M, n) are called n-shiftedm-polyvector fields onM. Then the space

X •
poly(M, n) = ⊕m≥0X

m
poly(M, n)
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is called the n-shifted Schouten–Nijenhuis algebra ofM. Its completion is denoted by X̂ •
poly(M, n). It is

simple to see that
X̂ •

poly(M, n) ∼= C∞(T∨M[−n− 1]),

the space of functions on the (−n− 1)-shifted cotangent bundle T∨M.
Since TM is a Lie algebroid, T∨M is a canonical Poisson manifold, which is in fact symplectic. According to
Proposition 3.8, we have the following

LemmaC.1. The spaceX •
poly(M, n) admits a degree (n+1)Poisson algebra structure, similarly X̂ •

poly(M, n).

This degree (n+1) Poisson bracket is also known as the n-shifted Schouten–Nijenhuis bracket. When n = 0,
the space of 0-shifted polyvector fields X •

poly(M, 0), coincides with the usual Schouten–Nijenhuis algebra
onM, which is simply denoted by X •

poly(M). When n = −1, the space of (−1)-shifted polyvector fields
X •

poly(M,−1) is the Poisson algebra Pol(T∨M). Its completion X̂ •
poly(M,−1) ∼= C∞(T∨M).

Any element in X m
poly(M, n) is a finite sum of homogeneous elements of the form:

Π = X̄1 � X̄2 � · · · � X̄m,

where Xi ∈X (M), and X̄i ∈X (M)[n+ 1] denotes the corresponding element with shifted degree. The
number |Π| = |X1|+ · · ·+ |Xm| is called the pure degree of X , whereasm is called the weight. By

‖ Π ‖n= |Π| −m(n+ 1),

we denote the total degree ofΠ. The following lemma provides an alternative description of shifted polyvector
fields.
Lemma C.2. A homogeneous n-shiftedm-polyvector field Π onM is equivalently to am-ary operation of
degree |Π| (the pure degree of Π):

Π : (C∞(M))⊗m → C∞(M)

satisfying the following properties:

1) Π is symmetric multilinear on C∞(M)[−n− 1]:

Π(f1, · · · , fi−1, fi, fi+1, fi+2, · · · , fm) = (−1)|fi|
[n+1]|fi+1|[n+1]

Π(f1, · · · , fi−1, fi+1, fi, fi+1, · · · , fm);

2) Π is a derivation of degree |Π|:
Π(f1, · · · , fm−1, fmf

′
m)

=Π(f1, · · · , fm−1, fm)f ′m + (−1)(|Π|+|f1|+···+|fm−1|)|fm|fmΠ(f1, · · · , fm−1, f
′
m).

The proof is omitted as it is completely analogous to the usual unshifted polyvector fields on ordinary smooth
manifolds.
Finally, we need a technical lemma for an explicit formula describing the (n+ 1)-shifted Poisson bracket in
X •

poly(M, n). For any Π ∈X p
poly(M, n) and Λ ∈X q

poly(M, n), let Π ◦Λ be the (p+ q− 1)-ary operation
(C∞(M))⊗p+q−1 → C∞(M) given by

(Π ◦ Λ)(f1, · · · , fp+q−1)

=
∑

σ∈Sh(p,q−1)

ε[n+1](σ)Π(Λ(fσ(1), · · · , fσ(q)), fσ(q+1), · · · , fσ(p+q−1)).

Here ε[n+1](σ) denotes the Koszul sign with respect to the shifted degrees |f1|[n+1], · · · , |fp+q|[n+1].
Lemma C.3. For any Π ∈X p

poly(M, n) and Λ ∈X q
poly(M, n), the degree (n+ 1) Poisson bracket [Π,Λ]

in X •
poly(M, n) as in Lemma C.1 coincides with the graded commutator:

[Π,Λ] = Π ◦ Λ− (−1)(‖Π‖n+n+1)(‖Λ‖n+n+1)Λ ◦Π.
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