We show that fornpoints ind-dimensional Euclidean space, a dataoblivious random projection of the columns ontoO(((logk+log logn)/ε^6)log(1/ε)) dimensions is sufficient to approximate the cost of all k-means clusterings up to a multiplicative (1±ε) factor. The previous-bestupper bounds on O(logn/ε^2) given by a direct application of the Johnson-Lindenstrauss Lemma, and O(k/ε^2)given by [Cohen etal.-STOC’15]
Oblivious Dimension Reduction fork-Means:Beyond Subspaces and the Johnson-Lindenstrauss Lemma / Becchetti, Luca; Bury, Marc; Cohen-Addad, Vincent; Grandoni, Fabrizio; Schwiegelshohn, CHRIS RENE. - (2019), pp. 1039-1050. ( 51st ACM Symposium on the Theory of Computing Phoenix; United States ) [10.1145/3313276.3316318].
Oblivious Dimension Reduction fork-Means:Beyond Subspaces and the Johnson-Lindenstrauss Lemma
Luca Becchetti
;Chris Schwiegelshohn
2019
Abstract
We show that fornpoints ind-dimensional Euclidean space, a dataoblivious random projection of the columns ontoO(((logk+log logn)/ε^6)log(1/ε)) dimensions is sufficient to approximate the cost of all k-means clusterings up to a multiplicative (1±ε) factor. The previous-bestupper bounds on O(logn/ε^2) given by a direct application of the Johnson-Lindenstrauss Lemma, and O(k/ε^2)given by [Cohen etal.-STOC’15]| File | Dimensione | Formato | |
|---|---|---|---|
|
Becchetti_Postprint_Oblivious-Dimension_2019.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
430.67 kB
Formato
Adobe PDF
|
430.67 kB | Adobe PDF | |
|
Becchetti_Oblivious-Dimension_2019.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
878.93 kB
Formato
Adobe PDF
|
878.93 kB | Adobe PDF | Contatta l'autore |
|
Becchetti_Frontespizio-indice_Oblivious-Dimension_2019.pdf
solo gestori archivio
Tipologia:
Altro materiale allegato
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
5.77 MB
Formato
Unknown
|
5.77 MB | Unknown | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


