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Abstract

We show that for n points in d-dimensional Euclidean space, a data oblivious random projec-

tion of the columns onto m ∈ O
(

log k+log logn
ε6 log 1

ε

)
dimensions is sufficient to approximate

the cost of all k-means clusterings up to a multiplicative (1 ± ε) factor. The previous-best
upper bounds on m are O( logn

ε2 ) given by a direct application of the Johnson-Lindenstrauss

Lemma, and O( k
ε2 ) given by [Cohen et al.-STOC’15].

We also prove the existence of a non-oblivious cost preserving sketch with target dimen-

sion O
(

log k
ε4 log 1

ε

)
, improving on dkε e [Cohen et al.-STOC’15]. Furthermore, we show how

to construct strong coresets for the k-means problem of size O(k ·poly(log k, ε−1)). Previous
constructions of strong coresets have size of order k ·min(d, k/ε).

Introduction

Random projections are a fundamental tool for dimensionality reduction, with numerous appli-
cations in streaming, compressed sensing, numerical linear algebra, graph sparsification, nearest
neighbor search, privacy, and clustering. At a high level, we are given an input consisting of
n vectors of dimension d, that induces a target set X of n× d matrices. We consider a proper
distribution over random d×m matrices S (sketching matrix ) such that, with good probability
and for every M ∈ X , the squared Frobenius norm1 of M is approximately preserved after
projection with S, i.e.

(1− ε)‖M‖2F ≤ ‖MS‖2F ≤ (1 + ε)‖M‖2F . (1)

In this work, we consider the application of random projections to the problem of sketching
the (Euclidean) k-means objective. Here, we are given n points A1, . . . , An in d-dimensional
Euclidean space (also represented as an n × d matrix A whose ith row is Ai). Our goal is to
identify k points c1, . . . , ck (centers) so as to minimize the sum of squared distances of any point
to the closest center, i.e.

∑n
i=1 minkj=1 ‖Ai− cj‖2. In other words, the centers define a partition

C1, . . . , Ck of the points (clustering), where Ci contains the points whose closest center is ci, and
we wish to minimize

∑k
j=1

∑
p∈Cj ‖p − cj‖

2. Every possible clustering is associated to exactly
one M ∈ X , where the rows of M correspond to the difference vector between each point and
its associated center. Our goal is to determine the minimal target dimension m that achieves

∗F. Grandoni is partially supported by the SNSF grant 200021 159697/1 and the SNSF Excellence grant
200020B 182865/1. C. Schwiegelshohn is partially supported by ERC Advanced Grant 788893 AMDROMA.

1We recall that, for an a× b matrix M , the Frobenius norm of M is ‖M‖F =
√∑a

i=1

∑b
j=1 M

2
i,j . For b = 1,

this is equivalent to the Euclidean norm of a vector.
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Eq. 1 for all M ∈ X . Intuitively, this allows us to reduce the dimension of the problem from d
to m, while approximately preserving its fundamental properties.

A particular interesting case is when the sketching matrix S is chosen in a data-oblivious
way. In other words, the distribution over random matrices can be fixed a priori, without any
knowledge of A. This makes random projections extremely useful in a number of areas such as
streaming, distributed computing, and massively parallel frameworks like MapReduce.

There are two incomparable bounds for obliviously sketching the Euclidean k-means prob-
lem. The first bound ofO( logn

ε2
) is a direct consequence of the distributional Johnson-Lindenstrauss

Lemma [38]. It states that when choosing m ∈ O( logn
ε2

), all pairwise distances in A are approx-
imately preserved. Hence the cost of every clustering is preserved via standard formulas, with
probability arbitrarily close to 1. The other state of the art bound by Cohen et al. [24] yields
m ∈ O( k

ε2
) and follows by sketching all orthogonal projections of rank k, of which k-means is a

special case (see the related work for an overview).
A natural question is whether one can get a better dependence of m on k and log n. For

example, this was posed as an open question by Jelani Nelson during his plenary talk at HALG
2018. Cohen et al. [24] had given strong evidence that a better dependence might indeed be

possible, showing that a projection onto O
(
log k
ε2

)
dimensions provides (at most) a (9 + ε)

approximation. Our main result is as follows.

For the Euclidean k-means problem, an oblivious random projection onto

O
(
log k+log logn

ε6
log 1

ε

)
dimensions preserves the cost of any k-clustering up to a

multiplicative (1± ε) factor.

Hence we improve the current state-of-the-art bounds for the range of k ∈ ω(log log n)∩o(n).
In the regime k ∈ Θ(log n), where previous methods [24, 38] achieved the same bounds, the
above bound is an exponential improvement (for constant ε).

While we consider the data-oblivious bound the more important result from both a the-
oretical and applied point of view, we are also able to show that using our techniques, there

exists a data-dependent random projection onto O
(
log k
ε4

log 1
ε

)
dimensions with a multiplicative

(1± ε) distortion. This improves on the dkε e bound by Cohen et al. [24]. This latter bound has
additional applications. For instance, combining our techniques with recent work on terminal
embeddings [49] allows us to prove the existence of coresets for the k-means problem of size
O(k · poly(log k, ε−1)). Previously, only coresets of order k ·min(k, d) were known, see Table 1
in the appendix.

Related Work

There are three basic techniques used for linear dimension reduction: random projections,
principal component analysis (PCA), or feature selection (sometimes called column selection).

Random Projections for Subspace Approximation and k-Means Following a tremen-
dous amount of activity over the past decade, we now know that random projections achieve
optimal dimension reduction in a number of regimes [6, 7, 37, 44, 45, 53]. They are also the
only known method for oblivious dimension reduction. The fact that they do not depend on
the data often makes them substantially quicker to apply especially when using sparse con-
structions. A folklore application of the Johnson-Lindenstrauss Lemma (see Lemma 2.6) states
that a random projection onto O(ε−2 log n) dimensions also preserves the cost of any k-means
clustering. Other than this result, most of the work has focused on low-rank approximation.
Here, we are interested in computing a matrix A′ of rank at most k such that ‖A − A′‖F is
minimized. The solution to this problem can be expressed analytically via the singular value
decomposition A := UΣV T , where U ∈ Rn×d has orthogonal columns2, V ∈ Rd×d has orthog-
onal rows, and Σ is a diagonal matrix where by convention Σ1,1 ≥ Σ2,2 ≥ . . . ,Σd,d ≥ 0 the

2the inner product of any two columns of U is 0 and the Euclidean norm of any column of U is 1.
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entries are non-increasingly ordered. It is well known that A′ = UkΣkV
T
k is the optimal rank

k approximation of A, where Uk is obtained by selecting only the first k columns of U , Vk is
obtained by selection the first k rows of V and Σk is obtained by setting Σi,i = 0 for i > k.
Using standard facts from linear algebra, we can alternatively express A′ = UkU

T
k A. In other

words, computing the optimal solution min
rank kA′

‖A − A′‖2F is equivalent to computing the opti-

mal solution min
rank k projection X

‖A−XXTA‖2F . The problem is closely related to k-means, as the

centroids of any k-means clustering are given via a specific rank k projection (see Section 2).
Sarlos [54] gave a data dependent random projection that achieves a (1± ε) approximation

to the optimal rank k projection in O(k log k + kε−1) dimensions and an oblvious projection
onto O(k log kε−2) dimensions3. Clarkson and Woodruff [21] improved this to O(kε−2) with a
matching lower bound for oblivious methods later shown by Nelson and Nguyen [53]. The first
paper to explicitly consider random projections for the k-means problem was authored Boutsides
et al. [14], who showed that an oblivious random projection onto O(kε−2) dimensions preserved
the k-means cost up to a 2 + ε factor. Cohen et al. [24] considerably improved this, showing
that all rank k projections (i.e. in particular also k-means) are preserved up to (1± ε) factors
by an oblivious projection onto O(k/ε2) dimensions. They also gave evidence that going below
k and log n dimensions is possible for k-means, achieving a 9 + ε approximation in O(ε−2 log k)
dimensions.

We note that there exists a vast amount of literature optimizing between running times,
target dimension, and sparsity of random projection matrices. Some of these constructions could
also be used for our result, at the cost of a slightly larger target dimension (up to polylog(m)
factors). The interested reader is referred to [3, 4, 5, 11, 20, 22, 23, 25, 28, 40, 48, 51, 52].

PCA Principal component analysis is arguably the most widely used form of dimension re-
duction. Not only does PCA reduce the intrinsic dimension of the point set, it also removes
a substantial amount of noise. Indeed, this feature is the main reason why PCA is routinely
used for learning, see [2, 8, 18, 27, 41, 42, 56]. Drineas et al. [29] were the first to apply PCA
to the k-means problem, showing that a projection onto the first k components preserves the
cost up to a factor of 2. This was substantially improved by Feldman et al. [33] and Cohen
et al. [24], and we now know that a (1 + ε) approximation is possible by projecting onto the
first dk/εe components. Cohen et al. [24] also showed that this bound is tight, i.e. PCA cannot
achieve a target dimension below k for k-means. Recently, Sohler and Woodruff [55] extended
PCA-based methods for arbitrary powers of Euclidean distances such as k-median.

Column Selection The last technique we wish to survey are column selection methods.
This form of dimension reduction has the advantage of being faster to compute than PCA and
retaining the features and in particular the sparsity of the data set, at the cost of a slightly
worse target dimension, see [10, 12, 13, 15, 26], with the current state of the art of O(k/ε2)
columns being due to Cohen et al. [24].

Organization. The rest of this paper is organized as follows. In Section 2 we introduce some
preliminary notions and tools. In Section 3, we present our high level ideas and outline the
proof strategy. In Section 4 we describe the cluster decomposition at the heart of our analysis,
and in Section 5 we show how to use it to bound the target dimension m. All the proofs that are
omitted in the main body are given in Appendix A. Our data-dependent dimension reduction
result is given in Appendix B. We briefly remark on k-means coresets in Appendix C.

Preliminaries

We use ‖M‖2F = (1 ± ε)‖N‖2F as an abbreviation for (1 − ε)‖N‖2F ≤ ‖M‖2F ≤ (1 + ε)‖N‖2F .
We use the shorthand [i] = {1, . . . i} to refer to the natural numbers up to a positive integer i.

3We note that if we only want to preserve the a (1 + ε)-approximation to the optimal rank k projection, but
not the cost, a random projection onto O(k/ε) dimensions is sufficient and necessary. See [21, 54] for details.

3



For an n × d matrix A, view the ith row Ai for i ∈ [n] as a point in d-dimensional Euclidean
space. Sometimes we will refer to a point set or the associated data matrix interchangeably by
A. We let |B| denote the number of rows of a matrix B. We say the cost of a point set P is
the value of the optimal 1-means clustering of P . The cost of a clustering C = {C1, . . . , Ck} is
the sum of the costs of the clusters in C. Throughout this paper, we will use OPT to denote
the cost of an optimal k-means clustering. The optimal center of any cluster Ci is the centroid
µ(Ci) = 1

|Ci|
∑

p∈Ci p. This can be easily seen due to the following lemma.

Lemma 2.1. [folklore] For any set of points A and any point p, the following equations hold:

•
∑|A|

i=1 ‖Ai − p‖2 =
∑|A|

i=1 ‖Ai − µ(A)‖2 + |A| · ‖p− µ(A)‖2

•
∑|A|

i=1

∑|A|
j=1 ‖Ai −Aj‖2 = 2|A| ·

∑|A|
i=1 ‖Ai − µ(A)‖2

This lemma enables us to express the k-means problem algebraically. We define the n × k
clustering matrix X (using the shorthand rank k c.m. X) with entries

Xi,j =


1√
|Cj |

if Ai ∈ Cj

0 otherwise.

Three properties are of interest. First, every column has unit Euclidean norm. Second, the
columns are pairwise orthogonal. Third, XXTA maps the ith row of A to the centroid of
cluster Cj . Thus, we can express the k-means objective as

min
rank k clustering matrix X

‖A−XXTA‖2F .

We note that if we lift the constraint that X is a clustering matrix and instead require
X only to be orthogonal, the problem is then known as the low rank subspace approximation
problem. The best rank 1-clustering matrix that maps the rows of A to the centroid µ(A) is
known as the center matrix. The resulting matrix of centroids can interchangeably be expressed
as 1
|A|11TA and 1µ(A)T , where 1 is the all 1 vector of appropriate dimension. We note that this

operation is invariant when sketching the rows of A, i.e. µ(A)TS = µ(AS)T .
We will aim at proving the following guarantee similar to those proposed in earlier work by

Feldman et al. [33] and Cohen et al. [24].

Definition 2.2 ((ε, k)-Means Cost Preserving Sketches). Let A be an n×d matrix corresponding
to n points in d dimensional space. Let c ≥ 0 be some fixed constant possibly depending on A.
Then an n×m matrix B is an (ε, k)-means cost preserving sketch of A with offset κ if for any
rank k clustering matrix X

(1− ε) · ‖A−XXTA‖2F ≤ ‖B −XXTB‖2F + κ ≤ (1 + ε)‖A−XXTA‖2F .

If B := AS for some d×m matrix S sampled from a distribution D that does not depend on A,
we say B is an oblivious sketch.

If κ = 0 (which is the case in Theorem 5.3), we will simply call B a (ε, k)-means cost
preserving sketch. We next state a few useful and standard properties (proof in the appendix)
of clustering matrices that we will extensively use throughout this paper.

Lemma 2.3. Let A be a matrix, and let X and Y be clustering matrices of A. Then:

1. ‖A−XXTA‖2F = ‖A− 1µ(A)T ‖2F − ‖XXTA− 1µ(A)T ‖2F ≤ ‖A− 1µ(A)T ‖2F .
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2. If Y is a refinement of X, i.e., every cluster induced by Y is a subcluster of a cluster
induced by X, then XXTY Y T = XXT and

‖A−XXTA‖2F = ‖A− Y Y TA‖2F + ‖Y Y TA−XXTY Y TA‖2F .

3. ‖XXTA‖2F ≤ ‖A‖2F .

We will use the following approximate triangle inequality for squared Euclidean spaces.
Similar statements can be found throughout k-means and coreset literature (see e.g. [19, 27, 33]).

Lemma 2.4 (Approximate Triangle Inequality). For any ε > 0, and matrices A,B,C of equal
dimension, we have |‖A− C‖2F − ‖B − C‖2F | ≤

(
1 + 1

ε

)
‖A−B‖2F + ε‖A− C‖2F .

Random Projections. We require our sketching matrices to have the following bounds.

Theorem 2.5 (Distributional Johnson-Lindenstrauss Lemma, Theorem 2.4 [21]). Let A be an
n × d matrix. Then there exists a distribution D over linear mappings in Rd×m such that for

S ∼ D and m ∈ O
(
log 1/δ
ε2

)
, with probability 1− δ,

(1− ε)‖A‖2F ≤ ‖AS‖2F ≤ (1 + ε)‖A‖2F

Possible realizations of these matrices are random Gaussian matrices, dense Rademacher
matrices [1], or sparse Rademacher matrices designed in [40]. Faster methods can sometimes
also be used, at the cost of a slightly larger target dimension. The interested reader is referred
to [3, 4, 5, 11, 23]. The super sparse embedding matrices of [22, 48, 51] cannot be used.

We note that this theorem already allows us to preserve the 1-means cost with target di-
mension m ∈ O( log 1/δ

ε2
) by applying it to the matrix A− 1µ(A)T . This theorem also gives rise

to the following two simple, but very useful statements. The first is essentially the application
of the Johnson-Lindenstrauss Lemma to the k-means problem.

Lemma 2.6. Let A be an n× d matrix with ` distinct rows. Then there exists a distribution D
over linear mappings in Rd×m such that for S ∼ D and m ∈ O

(
log(`/δ)
ε2

)
, AS is an (ε, k)-means

cost preserving sketch with probability 1− δ.

Generally, we cannot expect A to have any less than n distinct rows, therefore a naive
application of the aforementioned lemma requires a target dimension of Ω(logn). We will apply
this lemma to Y Y TA, where Y is a clustering matrix of rank k′ � n. By definition of clustering
matrices, Y Y TA can have at most k′ distinct rows.

The second immediate implication of Theorem 2.5 shows that even for an unbounded number
of distinct rows most of the distances will be approximately preserved. We will use this lemma
essentially to subsample the set of pairwise distances whenever a uniform subsample is sufficient
to preserve the entire cost.

Lemma 2.7. Let A be an n× d matrix. There exists a distribution D over linear mappings in

Rd×m such that for S ∼ D and m ∈ O
(

log 1
ζδ

ε2

)
, with probability 1− δ at least a (1− ζ)-fraction

of the pairs Ai, Aj , i 6= j are such that ‖AiS −AjS‖2 = (1± ε)‖Ai −Aj‖2.

Our Techniques

Most upper bounds for random projections apply the following basic proof scheme:

1. The Euclidean (resp. Frobenius) norm of any fixed vector (resp. matrix) is preserved up

to a factor (1± ε) with probability 1− δ if the target dimension is O
(
log 1/δ
ε2

)
.
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2. Identify a vector set P such that preserving the norm of each vector in P preserves the
cost of the entire problem. Then apply a union bound by setting δ = 1

|P | .

The first step is tight [37, 39], so all improvements on the target dimension are a result
of sophisticated applications of the union bound. For k-means there are two known ways to
proceed. First, it is well known that k-means is a (constrained) subspace approximation problem
(see Section 2). As mentioned above, this approach can never achieve a bound better than Ω(k),
meaning that specific properties of the k-means problem have to be exploited.

For the log n target dimension, we proceed in such a manner (Lemma 2.6). The famous
general Johnson-Lindenstrauss Lemma [38] states that the pairwise distances between any set
of n points are preserved by a random projection onto O(ε−2 log n) dimensions, which is also
optimal [45]. It is well known that the centroid of a set of points is the optimal 1-means
solution. A consequence of this fact is that the cost of clustering all points to the centroid is a
non-negative linear combination of the pairwise distances of the points, see Lemma 2.1. Hence,
the Johnson-Lindenstrauss Lemma also preserves the cost of k-means. A careful application of
this lemma is the basis of both the previous result by Cohen et al. [24] and our work.

We first review the (9 + ε) approximation by Cohen et al. [24]. Let A be the n× d matrix
corresponding to n points in d dimensions. They condition on the fact that distances between
centroids of the optimal k-means clustering are preserved, which, using Lemma 2.6, requires only
O( log k

ε2
) dimensions. The matrix of centroids is obtained by a suitable rank k clustering matrix

X applied to A. For any given clustering matrix Y , they then consider the cost ‖A−Y Y TA‖2F in
terms of the image ‖XXTA−Y Y TXXTA‖2F and the kernel ‖(I−XXT )A−Y Y T (I−XXT )A‖2F
of XXTA, respectively. The cost of clustering in the former space is preserved, i.e.

‖(XXTA− Y Y TXXTA)S‖2F = (1± ε) · ‖‖XXTA− Y Y TXXTA‖2F .

The cost within the latter space can be upper bounded by

‖((I −XXT )A− Y Y T (I −XXT )A)S‖2F ≤ ‖(I −XXT )AS‖2F ≤ (1 + ε) ·OPT.

Unfortunately, the cost cannot be decomposed in terms of image and kernel, i.e. ‖(A −
Y Y TA)S‖2F = ‖(XXTA − Y Y TXXTA)S‖2F + ‖((I − XXT )A − Y Y T (I − XXT )A)S‖ does
not hold in general. Here, Cohen et al. [24] apply a weaker form of the triangle inequality in
squared Euclidean spaces, which with some calculation leads to a 9 + ε approximation. The
analysis by Cohen et al. [24] is tight for the choice of distance vectors P they preserve, so we
require a number of additional ideas.

The loss in approximation is mainly due to the Frobenius norm of the kernel (I −XXT )A.
Therefore, one might be tempted to decrease it by adding additional centers (see also Feldman
et al. [33] for a similar idea for Bregman divergences). For every cluster Ci induced by X, we
have two conditions.

a. Either the cost of Ci may be decreased. If this is the case, we decrease the cost until
the kernel has norm less than ε2 · ‖(I − XXT )A‖2F , in which case the error incurred by
applying the triangle inequality is relative to O(ε) · ‖(I −XXT )A‖2F .

b. The cost of Ci cannot be decreased, even when adding a substantial amount of centers
(say poly(k)).

One may hope that for a Ci of the second type, we could find a different proof strategy to
preserve the cost. Unfortunately, this does not seem to be substantially easier than the general
case. However, if we additionally require the points in Ci to have (roughly) equal distance
from the center, we are able to provide such proof. To illustrate the idea, let us consider the
n-simplex. For every clustering C = {C1, . . . Ck} of the simplex, the cost of the clustering is
dominated by the clusters of largest cardinality. If we preserve the cost of any cluster of size,
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say ε
k ·n, then we preserve the cost of any clustering. Here our argument deviates from previous

applications of the union bound. The bound on the target dimension above also implies that
a (1 − δ)-fraction of the pairwise distances between the points is preserved (Lemma 2.7). By

setting δ ≤
(
ε
k

)2
, and noting that the distances in the simplex are all identical, we can ensure

that most of the intra-cluster pairwise distances are always preserved for the large clusters,
which implies that the cost of the large clusters is preserved. Our analysis simply extends this
illustration for the simplex to arbitrary clusters obeying a equidistance condition. To ensure
that the equidistance condition within Ci holds, we use a cluster decomposition that first grows
log n balls of exponentially increasing radii centered around the centroid of Ci. For each ring
induced by the difference of two subsequent balls, we apply steps a. and b. above.

A Cluster Decomposition

We will first outline a recursive procedure to subdivide the point set into clusters with carefully
determined properties, see also Algorithm 1. A similar construction without the equidistance
property was previously proposed by Feldman et al. [33] in the context of producing coresets
for clustering problems including (but not limited to) k-means.

This procedure repeatedly computes optimal k-means clusterings but is only used for ana-
lyzing random projections in Section 5.

We will compute a O(k log n)-ary tree T of constant (depending only on ε−1) depth. The
root of the tree represents the entire point set A. The nodes of the tree correspond to point
aubsets. The children of a node A′ ⊂ A are a clustering of A′, i.e. in particular a partition of
A′. The leaves of T will also form a partition of A. For each leaf corresponding to the point set
L ⊂ A, we use |L| copies of the centroid µ(L) as a representative of L.

In more detail, let α, β, γ be sufficiently small constants depending on ε. We process each
leaf A′ of the current tree (starting with A) as follows. Let ri := γ

|A′|‖A
′ − 1µ(A′)T ‖2F · 2i.

Then the rings of A′ induced by the ri are R0(A′) := {p ∈ A′ | ‖p − µ(A′)‖2 ≤ r0} and
Ri(A′) := {p ∈ A′ | ri−1 < ‖p − µ(A′)‖2 ≤ ri} for i ∈ [log n

γ ]. We will only write Ri instead

of Ri(A′) when the parent node A′ is clear from context. We compute an optimal k-clustering
for every ring. If the cost of such a clustering of Ri(A′) is smaller than a 1

1+α -factor compared
to the cost of clustering these to µ(A′), we append the clustering and continue the recursion.
The recursion stops in the following three cases. For points in R0(A′), we always stop. If the
clustering in Ri(A′), i > 0, does not become cheaper by at least a 1 + α factor, we also stop.
Finally, we always stop if the depth of A′ in the tree is 1/β + 2, see also Algorithm 1. The
stopping criteria are summarized with the following property.

Algorithm 1 Sketching Tree

1: Initialize an O(k log n
γ )-ary tree T with root A.

2: Compute an optimal k-means clustering C = {C1, . . . Ck}
3: Append clusters Ci ∈ C as children of A in T and initialize queue Q = C
4: while Q 6= ∅ do
5: A′ ← pop(Q)
6: if depth of A′ in T is less than 1/β + 2 then

7: Partition A′ into rings {R0, . . . R
log n

γ }
8: Append R0 as a child of A′ in T
9: for each ring Ri 6= R0 do

10: Compute an optimal k-means clustering of Ri with clusters K(Ri) = {K1, . . .Kk}
and clustering matrix Zi.

11: Append clusters in K(Ri) as children of A′

12: if ‖Ri − Zi(Zi)TRi‖2F · (1 + α) < ‖Ri − 1µ(A′)T ‖2F then
13: Add clusters of K(Ri) to Q

7



Definition 4.1. We define:

1. Let Llow be the leaves at depth 1/β + 2.

2. Let Linner be the points sets corresponding to rings R0.

3. Let Lexp be the point sets corresponding to rings Ri, i > 0, for which we did not continue
the recursion.

The parent of a node L in T is denoted by p(L).

Property 4.2. For each ring R0, we have ‖R0 − 1µ(R0)T ‖2F ≤ γ‖p(R0) − 1µ(p(R0))T ‖2F .
Furthermore, For each such Ri, i > 0, in Lexp, we have ‖Ri − Zi(Zi)TRi‖2F · (1 + α) ≥ ‖Ri −
1µ(p(Ri))T ‖2F .

The following bound on the size of the tree T is an immediate consequence of the stopping
criterion of the algorithm, see also line 6 of Algorithm 1.

Observation 4.3. T has at most
∑1/β+2

i=1 (k(1+ log n
γ ))i ∈ (k log n

γ )O(1/β) many nodes.

We first show that the point sets obeying the first two properties have small cost.

Lemma 4.4.
∑

L∈Llow∪Linner

‖L− 1µ(L)T ‖2F ≤

(
γ · 1 + α

α
+

(
1

1 + α

)1/β
)
·OPT.

We define Y to be the clustering matrix induced by the leaves of T , note that the rank
k′ of Y is larger than k (of order (k log n/γ)O(1/β)). Let X be an arbitrary rank k clustering
matrix. The next lemma will be used to show that under the conditions of Property 4.2 and
using Lemma 4.4, the Frobenius norm of XXT (A− Y Y TA) is bounded.

Lemma 4.5. Let A be an n×d matrix and let α > 0 be a constant. Let Y be a rank k′ clustering
matrix of A with clusters C = {C1, . . . Ck′}. Moreover:

1. Let Cexp be the subset of C containing all clusters satisfying ‖Ci − 1µ(Ci)
T ‖2F ≤ (1 +

α) · ‖Ci − ZZTCi‖2F for any rank k clustering matrix Z. Further, define ∆exp := α ·∑
Ci∈Cexp ‖Ci − 1µ(Ci)

T ‖2F .

2. Let Ccheap = C \ Cexp. Define ∆cheap :=
∑

Ci∈Ccheap ‖Ci − 1µ(Ci)
T ‖2F .

Then for any rank k clustering matrix X of A, we have

‖XXT (I − Y Y T )A‖2F ≤ ∆exp + ∆cheap.

Finally, we use the following bound on ‖Y Y TA−XXTY Y TA‖2F . The proof and statement is
very related to the 9+ε approximation used by Cohen et al. [24]. While we will later have tighter
estimates, this will nevertheless be useful. Note that the assumption ‖A− Y Y TA‖2F ≤ OPT is
always satisfied, as our tree is initialized with the optimal k-means clustering.

Lemma 4.6. Suppose ‖A− Y Y TA‖2F ≤ OPT ≤ ‖A−XXTA‖2F .
Then ‖Y Y TA−XXTY Y TA‖2F ≤ 9 · ‖A−XXTA‖2F .

8



Analysis of Oblivious Random Projections

Our main technical lemma now applies Lemma 2.7 to points sets with the properties satisfied
by any leaf in Lexp, see Property 4.2. In these cases, we do not require the full power of a union
bound to show that the k-means cost is well approximated.

Lemma 5.1. Let A be an n × d matrix, let p be a point and let α, ε be sufficiently small
constants. Suppose that the following two conditions hold:

1. ‖Ai − p‖2 ≤ 2 · 1
|A|‖A− 1pT ‖2F for all i ∈ [n].

2. ‖A−XXTA‖2F (1 + α) ≥ ‖A− 1pT ‖2F for all rank k cluster matrices X.

Then there exists a distribution D over linear mappings in Rd×m with m ∈ O
(
log k/(εδ)

ε2

)
such

that for S ∼ D and for all rank k clustering matrices X of A, with probability at least 1− δ,

‖AS −XXTAS‖2F · (1 + α+ ε) ≥ ‖AS − 1pTS‖2F ≥ ‖AS − 1µ(A)TS‖2F .

The high level argument is as follows. Suppose that the rank k clustering matrix Z is the
minimizer of ‖AS − ZZTAS‖2F , and let C = {C1, . . . Ck} be the set of clusters induced by Z.
We consider Ci to be cheap if its cost for the original points in A was at most an O

(
ε
k

)
-fraction

of ‖A− 1pT ‖2F . Ci is considered to be expensive otherwise. The total contribution of the cheap
clusters can be at most an O(ε)-fraction of ‖A−ZZTA‖2F , so what remains to be shown is that
the cost of the remaining clusters is lower bounded.

This is shown in the following lemma, where we prove that the cost of expensive clusters are
always preserved. The crucial observation is that these clusters always contain many points.

Lemma 5.2. Assume the conditions of Lemma 5.1 hold and suppose the target dimension m

of a random projection S is in O
(
log 1/(εηδ)

ε2

)
, where η, ε, δ > 0. Then with probability 1− δ, for

all set of points P ⊂ A, i.e. a subset of rows of A, satisfying

‖P − 1µ(P )T ‖2F ≥ η · ‖A− 1pT ‖2F , (2)

we have
‖PS − 1µ(P )TS‖2F ≥ (1− ε) · ‖P − 1µ(P )T ‖2F .

Proof. We first upper bound the cost of P . Observe that, for x, y ∈ P , we deterministically
have:

‖x− y‖2 ≤ 2‖x− p‖2 + 2‖y − p‖2
Ass. 1

of Lemma 5.1
≤ 8

|A|
‖A− 1pT ‖2F , (3)

hence

‖P − 1µ(P )T ‖2F
Lem. 2.1

=
1

2|P |
∑
x∈P

∑
y∈P
‖x− y‖2

(3)

≤ |P | 4

|A|
‖A− 1pT ‖2F

(2)⇒ |P | ≥ 1

4
η · |A|. (4)

Next, we set ζ < ε·η3
8 and apply Lemma 2.7. It follows that all but a ζ-fraction of the pairwise

distances in A are approximately preserved up to (1 ± ε) factors with probability 1 − δ, if

m ∈ O
(

log 1
ζδ

ε2

)
= O

(
log 1

εηδ

ε2

)
. For our choice of ζ, we then deterministically have

ζ ·
(
|A|
2

)
≤ ζ · |A|

2

2

(4)

≤ ζ
|P |22
η2

≤ εη

4
|P |2 (5)

which implies that all but an εη/8-fraction of the pairwise distances in P are preserved. Let
Dgood(PS) and Dbad(PS) be the set of pairs of points of P whose distances are preserved and

9



are not preserved, resp., up to a (1± ε) factor after projection. We lower bound the distances
of Dbad(PS) by 0. We have

‖PS − 1µ(P )TS‖2F
Lem. 2.1

=
1

2|P |
∑
x∈P

∑
y∈P
‖xS − yS‖2

≥ 1

2|P |
∑

(x,y)∈Dgood(PS)

‖xS − yS‖2
Lem. 2.7
≥ 1− ε

2|P |
∑

(x,y)∈Dgood(PS)

‖x− y‖2

≥ 1− ε
2|P |

∑
x∈P

∑
y∈P
‖x− y‖2 −

∑
(x,y)∈Dbad(PS)

‖x− y‖2


(5)

≥ 1− ε
2|P |

∑
x∈P

∑
y∈P
‖x− y‖2 − εη

4
|P |2 max

x,y
‖x− y‖2


(3)

≥ 1− ε
2|P |

∑
x∈P

∑
y∈P
‖x− y‖2 − εη

4
· |P |2 · 8

|A|
‖A− 1pT ‖2F


Lem. 2.1

=
1− ε
2|P |

(
2|P |‖P − 1µ(P )T ‖2F − 2εη · |P |2 · 1

|A|
‖A− 1pT ‖2F

)
(2)

≥ (1− ε) ·
(
‖P − 1µ(P )T ‖2F − ε‖P − 1µ(P )T ‖2F

)
≥ (1− 2ε) · ‖P − 1µ(P )T ‖2F

Rescaling ε completes the proof.

Theorem 5.3. Let A be an n× d matrix corresponding to n points in d-dimensional Euclidean
space. Then there exists an oblivious (ε, k)-means cost preserving sketch AS ∈ Rn×m with

m ∈ O
(

(log k + log log n) log ε
−1

ε6

)
.

Proof. Let α, β, γ, and ε′ be constants depending on ε to be determined later. Let L =
{L1, . . . Lk′} be the clustering induced by the leaves when running Algorithm 1 on A with
parameters α, β, and γ. We further use Y to denote the clustering matrix induced by L.
Finally, define c :=

∑
L∈Lexp ‖L − 1µ(L)T ‖2F . We will condition on the following events. The

number of events depends on α, β, γ.

1. Let E1 be the event that the 1-means cost of all the leaves L of T is preserved, i.e.:

∀L ∈ L, ‖LS − 1µ(L)TS‖2F = (1± ε′)‖L− 1µ(L)T ‖2F

2. Let E2 be the event that the pairwise distances between all rows of Y Y TA are preserved
and for any clustering matrix X, we have

‖(Y Y TA−XXTY Y TA)S‖2F = (1± ε′)‖Y Y TA−XXTY Y TA‖2F .

3. Let E3 be the event that for all leaves L ∈ Lexp, for all rank k clustering matrices Z of
appropriate dimension, we have

‖LS − ZZTLS‖2F · (1 + α+ ε′) ≥ ‖LS − 1µ(L)TS‖2F .

For any rank k clustering matrix X, we bound the distortion incurred by S as follows:

|‖A−XXTA‖2F − ‖AS −XXTAS‖2F |
≤ |‖A−XXTA‖2F − (‖Y Y TA−XXTY Y TA‖2F + c)| (6)

+ |‖Y Y TA−XXTY Y TA‖2F + c− (‖Y Y TAS −XXTY Y TAS‖2F + c)| (7)

+ |‖AS −XXTAS‖2F − (‖Y Y TAS −XXTY Y TAS‖2F + c)|. (8)

10



We bound the terms (6), (7) and (8) separately. To apply Lemma 4.5, let us first consider
∆cheap and ∆exp as given by the trees. For the former, we define ∆cheap =

∑
L∈Llow∪Linner ‖L−

1µ(L)T ‖2F . For the latter, we define ∆exp =
∑

L∈Lexp max
rank k
c.m. Z

‖L − 1µ(L)T ‖2F − ‖L − ZZTL‖2F .

Using Property 4.2 and Lemma 2.3, we then have ∆exp ≤ α ·
∑

L∈Lexp ‖L− 1µ(L)T ‖2F = α · c.
After projecting, we derive upper bounds for these values denoted by ∆S

exp and ∆S
cheap.

Conditioned on event E1, we have ‖LS − 1µ(L)TS‖2F ≤ (1 + ε′) · ‖LS − 1µ(L)TS‖2F and
hence ∆S

cheap := (1 + ε′) ·∆cheap. For ∆exp, we observe, conditioned on events E1 and E3 that∑
L∈Lexp max

rank k
c.m. Z

‖LS−1µ(L)TS‖2F−‖LS−ZZTLS‖2F ≤ (α+ε′)·
∑

L∈Lexp ‖LS−1µ(L)TS‖2F ≤ (α+

ε′)·(1+ε′)
∑

L∈Lexp ‖L−1µ(L)T ‖2F = (α+ε′)(1+ε′)·c and hence we set ∆S
exp := (α+ε′)(1+ε′)·c.

Further, for every cluster Li induced by Y , let Zi be the rank k clustering matrix induced
by X in Li. Define the rank k · k′ clustering matrix Z as the concatenation of all Zi and let
A′ = ZZTA. Due to the second statement of Lemma 2.3, we then have XXTZZT = XXT and
Y Y TZZT = Y Y T .

We will use the following lemma (proof in the appendix).

Lemma 5.4. Let B be either the realization of a random sketching matrix S or the d × d
identity matrix. Then for matrices A′, X, Y , and Z and the constant c defined as above, and
conditioned on events E1, E2, E3 happening for S, we have:

1. ‖AB −XXTAB‖2F = ‖AB − ZZTAB‖2F + ‖A′B −XXTA′B‖2F
2. ‖A′B − Y Y TA′B‖2F ≤ ∆S

cheap + ∆S
exp

3.
∣∣‖AB − ZZTAB‖2F − c∣∣ ≤ 3∆S

exp + ∆S
cheap.

For Term (8), we have

|‖AS −XXTAS‖2F − (‖Y Y TAS −XXTY Y TAS‖2F + c)|
1. of Lem. 5.4

= |‖A′S −XXTA′S‖2F + ‖AS − ZZTAS‖2F − (‖Y Y TA′S −XXTY Y TA′S‖2F + c)|
3. of Lem. 5.4

≤ |‖A′S −XXTA′S‖2F − ‖Y Y TA′S −XXTY Y TA′S‖2F |+ 2∆S
exp + ∆S

cheap

Lem. 2.1
= |‖A′S −XXTY Y TA′S‖2F − ‖XXTY Y TA′S −XXTA′S‖2F

−‖Y Y TA′S −XXTY Y TA′S‖2F |+ 3∆S
exp + ∆S

cheap

Lem. 4.5
≤ |‖A′S −XXTY Y TA′S‖2F − ‖Y Y TA′S −XXTY Y TA′S‖2F |+ 4∆S

exp + 2∆S
cheap

Lem. 2.4
≤

(
1 +

1

ε

)
‖A′S − Y Y TA′S‖2F + ε‖Y Y TA′S −XXTY Y TA′S‖2F + 4∆S

exp + 2∆S
cheap

2. of Lem. 5.4
≤

(
1 +

1

ε

)
(∆S

cheap + ∆S
exp) + ε‖Y Y TAS −XXTY Y TAS‖2F + 4∆S

exp + 2∆S
cheap

Event E2
≤

(
5 +

1

ε

)
(∆S

cheap + ∆S
exp) + ε(1 + ε′)‖Y Y TA−XXTY Y TA‖2F

Lem. 4.6
≤

(
5 +

1

ε

)
(∆S

cheap + ∆S
exp) + 9(1 + ε′) · ε‖A−XXTA‖2F (9)

The same bound for Term (6) can be derived in a completely analogous way (a slight
modification in the chain of the inequalities can get rid of the leading factor 9 in front of
‖A−XXTA‖2F , which we omit for conciseness). We therefore have

|‖A−XXTA‖2F − (‖Y Y TA−XXTY Y TA‖2F + c)|

≤
(

5 +
1

ε

)
(∆S

cheap + ∆S
exp) + 9ε‖A−XXTA‖2F . (10)
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For Term (7), we use Lemma 2.6 and condition on Event E2, i.e. the pairwise distances
between all the rows of Y Y TA are preserved. This yields

|‖Y Y TA−XXTY Y TA‖2F + c− (‖Y Y TAS −XXTY Y TAS‖2F + c)|
Event E2
≤ ε′ · ‖Y Y TA−XXTY Y TA‖2F

Lem. 4.6
≤ 9ε′ · ‖A−XXTA‖2F . (11)

Recall that ∆S
cheap = (1 + ε′) · ∆cheap ≤ 2 ·

(
γ · 1+αα +

(
1

1+α

)1/β)
OPT due to Lemma 4.4.

Furthermore due to Property 4.2, ∆S
exp ≤ (α+ ε′)(1 + ε′) · c ≤ (α+ ε′)(1 + ε′)(1 + α) ·OPT ≤

4(α+ ε′) ·OPT. Combining this with (10), (9), and (11), we obtain

|‖A−XXTA‖2F − ‖AS −XXTAS‖2F | ≤
(

10 +
2

ε

)
· (∆S

cheap + ∆S
exp) + 18(ε′ + ε) · ‖A−XXTA‖2F

≤ 12

ε
·

(
2 ·

(
γ · 1 + α

α
+

(
1

1 + α

)1/β
)

+ 4(α+ ε′)

)
OPT + 18(ε′ + ε) · ‖A−XXTA‖2F

We set α = ε′ = ε2, β = ε2

2 log 1/ε2
, and γ = ε4. Using the fact that ln(1 + α) ≥ α/2, we have(

1
1+α

)1/β
≤ ε2. Then the factor in front of OPT is bounded from above by 96ε. Rescaling ε,

(and consequently α, ε′, β, and γ) proves the desired approximation guarantee.
To conclude the proof, we show that our success probability is 1 − δ. We take a union

bound over the probability of events E1, E2, E3 not happening. Note that the target dimension

is at least c′ ·

(
log

(
1
εδ

(k log n
ε4

)O(ε−2 log ε−2)
)

ε4

)
for some large enough constant c′, and so at least

c∗ ·
(

log
k·|T |
εδ

ε4

)
for a large enough constant c∗.

To obtain a bound on the probability of event E1 happening, we apply Theorem 2.5. By
observation 4.3, the tree has size |T | = (k log n

γ )(O(1/β)) = (k log n
ε )O(ε−2 log ε−1). Therefore,

since the target dimension is at least c∗ ·
(

log
k·|T |
εδ

ε4

)
, we have that event E1 happens with

probability at least 1 − δ/3. We claim that the success probability of event E2 is at least
1 − δ/3 as well. Indeed, the number of rows in Y Y TA is bounded by the size of the tree

and so applying Lemma 2.6 for Y Y TA with target dimension at least c∗ ·
(

log
|T |
δ

ε4

)
yields the

claim. Finally, event E3 also happens with probability at least 1 − δ/3. Indeed, following

Property 4.2, we invoke Lemma 5.1 with target dimension c∗ ·
(
log k + log log n+ log 1

δ

) log 1
ε

ε6
.

This is enough to get success probability at least 1 − δ/3 since by Observation 4.3 we have

c∗ ·
(

log
k·|T |
εδ

ε4

)
≥ c′ ·

(
log

k·|Lexp|
εδ

ε4

)
.
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Omitted Proofs from Main Body

Proof of Lemma 2.3. For the first statement, let {C1, . . . Ck} be the clusters of A induced by
X. We have

‖A− 1µ(A)T ‖2F =
k∑
i=1

∑
Aj∈Ci

‖Aj − µ(A)‖2

Lem. 2.1
=

k∑
i=1

 ∑
Aj∈Ci

‖Aj − µ(Ci)‖2
+ |Ci| · ‖µ(Ci)− µ(A)‖2

=
k∑
i=1

‖Ci − 1µ(Ci)
T ‖2F + ‖1µ(Ci)

T − 1µ(A)T ‖2F

= ‖A−XXTA‖2F + ‖XXTA− 1µ(A)T ‖2F .

The claim follows by rearranging and noting that ‖XXTA− 1µ(A)T ‖2F can never be negative4.
For the second statement, consider a cluster Ci induced by X and Ki,1 . . .Ki,` to be the

subclusters of Ci induced by Y . To see XXTY Y T = XXT , we have for all Ci

µ(Ci) =
1

|Ci|
∑
x∈Ci

x =
1

|Ci|
∑̀
j=1

∑
x∈Ki,j

x =
1

|Ci|
∑̀
j=1

|Ki,j |µ(Ki,j) =
1∑`

j=1 |Ki,j |

∑
|Ki,j |µ(Ki,j).

Summing up over all Ci and applying the first claim completes the proof of the second claim.
For the third statement, we use the fact that XXT is an orthogonal projection, which can

only decrease the norm.

Proof of Lemma 2.4. We prove the case where A,B,C ∈ R (i.e. are scalars). The general claim
follows as the absolute value of the sum is upper bounded by the sum of absolute values.

The claim holds if A = B (LHS zero, RHS non-negative), A = C, or B = C (RHS is always
at least ‖A−B‖2).

For C < A < B (C < B < A analogously), we have

(B − C)2 − (A− C) = (B −A+A− C)2 − (A− C)2 ≤ x(b− a)2 + ε(A− C)2

⇔ 2(B −A) · (A− C)− ε(A− C)2 ≤ (x− 1)(B −A)2

⇔ 2(A− C)− ε(A− C)2

B −A
≤ (x− 1)(B −A).

The LHS is maximal for (A− C) = (B −A)/ε. Then (B −A)2/ε ≤ (x− 1)(B −A)2 which
holds for x ≥ 1 + 1/ε.

Now, let A < C < B and B − C > C − A (analogously B < C < A and A − C > C − B).
Then

(B − C)2 − (C −A)2 = (B −A− (C −A))2 − (C −A)2 ≤ x(B −A)2 + ε(C −A)2

⇔ (B −A)2 − 2(B −A)(C −A) ≤ x(B −A)2 + ε(C −A)2

⇔ −2(B −A)(C −A)− ε(C −A)2 ≤ (x− 1)(B −A)2,

which holds for x ≥ 1.

4We note that this equation is a special case of the Pythagorean theorem, as 1
|A|11T is always a subspace of

XXT .
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Lastly, let A < C < B and C −A > B −C (analogously B < C < A and C −B > B −C).
Then

(C −A)2 − (B − C)2 = (C −A)2 − (B −A− (C −A))2 ≤ x(B −A)2 + ε(C −A)2

⇔ 2(B −A)(C −A)− (B −A)2 ≤ x(B −A)2 + ε(C −A)2

⇔ 2(B −A)(C −A)− ε(C −A)2 ≤ (x+ 1)(B −A)2

⇔ 2(C −A)− ε(C −A)2

B −A
≤ (x+ 1)(B −A)

As in the first case, the LHS is maximal if (C−A) = (B−A)/ε, which holds if x ≥ 1 + 1/ε.

Proof of Lemma 2.6. We first note that a linear mapping always preserves the distances between
two identical rows (i.e. the zero vector is always mapped to the zero vector). We therefore only
have to consider the non-zero difference vectors between two rows.

The second part of Lemma 2.1 states that the k-means cost can be expressed as a non-
negative linear combination of the pairwise distances. Since there are only ` distinct rows, there
are only

(
`
2

)
≤ `2 pairwise distances. The claim then follows by applying Theorem 2.5 with

δ′ = δ/`2.

Proof of Lemma 2.7. Due to Theorem 2.5, for every vector x ∈ Rd the Euclidean norm is
preserved up to (1 ± ε) factors with probability 1 − ζδ. This also implies that on expectation
at most a ζδ fraction of the distances are not preserved. Using Markov’s inequality, at most a
ζ-fraction of the distances are not preserved with probability 1− δ.
Proof of Lemma 4.4. We say that a node P ∈ T is a parent node if it has at least one child.
Define I` to be the parent nodes (i.e. the nodes with children) of T at level `. We will first
show that the sum of all 1-means costs for the parent nodes in I` satisfies

∑
P∈I`

‖P − 1µ(P )T ‖2F ≤
(

1

1 + α

)i−1
·OPT. (12)

We prove this claim by induction. For level 1, we only have the optimal clusters C = {C1, . . . Ck}
of A. Suppose all of them have children. Then

∑k
j=1 ‖Cj − 1µ(Cj)

T ‖2F = OPT =
(

1
1+α

)0
OPT.

For the inductive step, we assume that this claim holds up to level ` and we consider
level ` + 1. Let A′ ∈ I` and let Ri be the ring associated with a child P of A. For P to
be an parent node, the check in line 12 was true, i.e. for the clustering matrix Zi we have
‖Ri − Zi(Zi)TRi‖2F · (1 + α) ≤ ‖Ri − 1µ(A′)T ‖2F . Therefore∑

A′∈I`

∑
P∈children(A′)∩I`+1

‖P − 1µ(P )T ‖2F

Line 12
≤ 1

1 + α

∑
A′∈I`

∑
P∈children(A′)∩I`+1

‖P − 1µ(A′)T ‖2F ≤
1

1 + α

∑
A′∈I`

‖A′ − 1µ(A′)T ‖2F

≤ 1

1 + α
·
(

1

1 + α

)`−1
OPT =

(
1

1 + α

)`
OPT.

Let us now consider the cost of all leaves in Llow, i.e. the leaves at the lowest level 1/β + 2.
Their cost is upper bounded by the cost of their parent nodes, so using (12)

∑
L∈Llow

‖L− 1µ(L)T ‖2F ≤
(

1

1 + α

)1/β

·
k∑
j=1

‖Cj − 1µ(Cj)
T ‖2F . (13)
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Let us define p(L) to be the parent node of any L ∈ Linner. We have

∑
L∈Linner

‖L− 1µ(L)T ‖2F =

1/β∑
i=1

∑
L∈Linner∩Ii

‖L− 1µ(L)T ‖2F

≤
1/β∑
i=1

∑
L∈Linner∩Ii

γ · ‖p(L)− 1µ(p(L))T ‖2F

(12)

≤ γ ·
1/β∑
i=1

(
1

1 + α

)i k∑
j=1

‖Cj − 1µ(Cj)
T ‖2F ≤ γ ·

1 + α

α

k∑
j=1

‖Cj − 1µ(Cj)
T ‖2F , (14)

where the first inequality follows from the item of Definition 4.1. Summing (13) and (14)
completes the proof.

Proof of Lemma 4.5. Let K = {K1, . . .Kk} be the clustering induced by X on A. Define the
row indexes of Ci as Ind(Ci) := {` ∈ [n] | A` ∈ Ci}. We first modify the rows of A to obtain
a new matrix A′. For every A` ∈ Ci ∩ Kj , we set A′` = µ(Ci ∩ Kj). We use Zi to refer to
the clustering matrix mapping Ci to the centroids µ(Ci ∩ Kj), and Z to denote the overall
clustering matrix obtained by appending the columns of the Zi. We define A′ = ZZTA. Since
Z is a refinement of X and Y , by the second item of Lemma 2.3 we have XXTA = XXTA′

and Y Y TA = Y Y TA′. Thus

‖XXT (I − Y Y T )A‖2F = ‖XXTA−XXTY Y TA‖2F = ‖XXTA′ −XXTY Y TA′‖2F

= ‖XXT (I − Y Y T )A′‖2F
Lem. 2.3
≤ ‖(I − Y Y T )A′‖2F .

Let us now consider the rows of (I − Y Y T )A′ induced by the clusters in Cexp. We have∑
Ci∈Cexp

∑
`∈Ind(Ci)

‖A′` − (Y Y TA′)`‖2 =
∑

Ci∈Cexp

‖ZiZTi Ci − 1µ(Ci)
T ‖2F

Lem. 2.3
=

∑
Ci∈Cexp

‖Ci − 1µ(Ci)
T ‖2F − ‖Ci − ZiZTi Ci‖2F

≤ α ·
∑

Ci∈Cexp

‖Ci − ZiZTi Ci‖2F
Lem. 2.3
≤ α ·

∑
Ci∈Cexp

‖Ci − 1µ(Ci)
T ‖2F = ∆exp (15)

where the first equation holds by definition of A′ and Zi and the first inequality due to the
definition of Cexp. For Ccheap, we have∑

Ci∈Ccheap

∑
`∈Ind(Ci)

‖A′` − (Y Y TA′)`‖2

=
∑

Ci∈Ccheap

‖ZiZTi Ci − 1µ(Ci)
T ‖2F

Lem. 2.3
=

∑
Ci∈Ccheap

‖Ci − 1µ(Ci)
T ‖2F − ‖Ci − ZiZTi Ci‖2F

≤
∑

Ci∈Ccheap

‖Ci − 1µ(Ci)
T ‖2F = ∆cheap, (16)

The claim follows from (15) and (16).
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Proof of Lemma 4.6.

‖Y Y TA−XXTY Y TA‖2F
= ‖Y Y TA−A+A−XXTA+XXTA−XXTY Y TA‖2F
≤ (‖Y Y TA−A‖F + ‖A−XXTA‖F + ‖XXTA−XXTY Y TA‖F )2

= (‖A− Y Y TA‖F + ‖A−XXTA‖F + ‖XXT (A− Y Y TA)‖F )2

3. of Lem. 2.3
≤ (2‖A− Y Y TA‖F + ‖A−XXTA‖F )2 ≤ 9‖A−XXTA‖2F

Proof of Lemma 5.1. Let us condition on the fact that the 1-means clustering and the cost of
clustering to the center p is approximately preserved, i.e. ‖AS − 1pTS‖2F = (1± ε)‖A− 1pT ‖2F .
Clearly, since this is a fixed matrix, this will happen with probability 1− δ due to Theorem 2.5.

We can now turn our attention to ‖AS−ZZTAS‖2F , where Z is the optimal rank k clustering
matrix of AS. We partition the clusters induced by Z into cheap clusters Ccheap with cost at
most ε

k(1+α) · ‖A− 1pT ‖2F and the remaining expensive clusters Cexp. We will apply Lemma 5.2

with η ≥ ε
k(1+α) , i.e. for a target dimension m ∈ O

(
log 1

εηδ

ε2

)
= O

(
log k

εδ
ε2

)
, the projection

decreases the cost of any expensive cluster by no more than an (1− ε) factor with probability
1− δ. The total contribution of the cheap clusters is∑

Ci∈Ccheap

‖Ci − 1µ(Ci)
T ‖2F ≤

ε

1 + α
· ‖A− 1pT ‖2F

Ass. 2
≤ ε · ‖A− ZZTA‖2F , (17)

hence the expensive clusters incur all but an ε-fraction of the cost of ‖A − ZZTA‖2F . Putting
everything together, we have

‖AS − ZZTAS‖2F =
∑

Ci∈Cexp

‖CiS − 1µ(Ci)
TS‖2F +

∑
Ci∈Ccheap

‖CiS − 1µ(Ci)
TS‖2F

≥
∑

Ci∈Cexp

‖CiS − 1µ(Ci)
TS‖2F

Lem. 5.2
≥ (1− ε)

∑
Ci∈Cexp

‖Ci − 1µ(Ci)
T ‖2F

(17)

≥ (1− ε)2‖A− ZZTA‖2F
Ass. 2
≥ (1− ε)2 · 1

1 + α
‖A− 1pT ‖2F

Thm 2.5
≥ (1− ε)3 · 1

1 + α
‖AS − 1pTS‖2F

ε≤1/7,α≤1⇒ ‖AS − 1pTS‖2F ≤ (1 + α+ 9ε) · ‖AS − ZZTAS‖2F .

By the union bound, we have a success probability of at least 1−2δ. Rescaling ε and δ concludes
the proof.

Proof of Lemma 5.4. For (1), we applying the second statement of Lemma 2.3 and the Pythagorean
theorem:

‖AB −XXTAB‖2F = ‖AB‖2F − ‖XXTAB‖2F
= ‖AB‖2F − ‖ZZTAB‖2F + ‖ZZTAB‖2F − ‖XXTAB‖2F
= ‖AB − ZZTAB‖2F + ‖ZZTAB‖2F − ‖XXTZZTAB‖2F
= ‖AB − ZZTAB‖2F + ‖ZZTAB −XXTZZTAB‖2F
= ‖AB − ZZTAB‖2F + ‖A′B −XXTA′B‖2F .
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For (2), we condition on ‖LiS −ZiZTi LS‖2F · (1 + α+ ε′) ≥ ‖LiS − µ(Li)S‖2F (Condition 3)
for all Li ∈ Lexp.

‖A′B − Y Y TA′B‖2F
=

∑
Li∈Llow∪Linner

‖ZiZTi LiB − 1µ(Li)
TB‖2F +

∑
Li∈Lexp

‖ZiZTi LiB − 1µ(Li)
TB‖2F

Lem. 2.3
≤

∑
Li∈Llow∪Linner

‖LiB − 1µ(Li)
TB‖2F +

∑
L∈Lexp

‖LiB − 1µ(Li)
TB‖2F − ‖LB − ZiZTi LiB‖2F

Event E3
≤

∑
Li∈Llow∪Linner

‖LiB − 1µ(Li)
TB‖2F + (α+ ε′)

∑
Li∈Lexp

‖LiB − ZiZTi LiB‖2F

≤ ∆S
exp + ∆S

cheap.

For (3) and again assuming Condition 3, we have

|‖AB − ZZTAB‖2F − c| =

∣∣∣∣∣∣
∑

Li∈Llow∪Linner

‖LiB − ZiZTi LiB‖2F +
∑

Li∈Lexp

‖LiB − ZiZTi LiB‖2F − c

∣∣∣∣∣∣
Event E1
≤

∣∣∣∣∣∣
∑

Li∈Lexp

‖LiB − ZiZTi LiB‖2F − ‖LiB − 1µ(Li)
TB‖2F

∣∣∣∣∣∣+ ∆S
cheap.

We will bound
∣∣∣∑Li∈Lexp ‖LiB − ZiZ

T
i LiB‖2F − ‖LiB − 1µ(Li)

TB‖2F
∣∣∣ assuming that the argu-

ments are always positive or always negative. The entire sum may then be bounded by the sum
of both derived values. If ‖LB−ZiZTi LB‖2F −‖LN −1µ(L)TB‖2F is positive, then conditioning
on event E1 the difference is at most ε′ · c ≤ ∆S

exp. If the sign is negative, we have

|‖AB − ZZTAB‖2F − c|
Events E1,E3
≤

∑
L∈Lexp

∣∣∣∣( 1− ε′

1 + α+ ε′
− 1

)∣∣∣∣ ‖L− 1µ(L)T ‖2F + ∆S
cheap

≤ (α+ 2ε′)
∑

L∈Lexp

‖L− 1µ(L)T ‖2F + ∆S
cheap ≤ 2∆S

exp + ∆S
cheap.

Data Dependent Dimension Reduction

In this section we show that an explicit construction of the sketching tree from Section 4
combined with a random projection achieves allows to reduce the target dimension to Oε(log k)
dimensions. The main difference is that we do not require to preserve the cost of the expensive
leaves in an oblivious manner. This allows us to store the cost of these points in the offset c,
and we apply the random projection onto Y Y TA, instead of A.

In the following we use OPTk(A
′) to denote the cost of an optimal k means clustering on a

point set A′ and write (a, b)-approximation if a clustering has cost less than a ·OPTk and uses
at most b · k centers. Since we aim at making Algorithm 1 constructive, we use the following
result by Makarychev et al. [47].

Theorem B.1 ([47]). There exists a polynomial time algorithm for k-means that computes a
(1 + ε,O(1/ε))-approximation.

The algorithm now proceeds very similar to the one proposed in Section 4. For every node
A′ of the tree, we use the bi-criteria approximation to obtain a clustering with cost at most
(1+α/3)·OPTk(A

′). If the cost decreases, we continue to do so. If the cost does not decrease, the
procedure stops, i.e. we skip the partitioning into rings. The stopping criteria are summarized
thus:
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Algorithm 2 Constructive Sketching Tree

1: Initialize an O(k/α))-ary tree T with root A.
2: Compute a (1 + α/3, O(1/α))-approximate clustering C = {C1, . . . CO(k/α)} and initialize

queue Q := C
3: while Q 6= ∅ do
4: A′ ← pop(Q)
5: if depth of A′ in T is less than 1/β + 2 then
6: Compute a (1 + α/3, O(1/α))-approximate clustering of A′ with clustering matrix X

and clusters {C1, . . . , CO(k/α)}
7: if ‖A′ −XXTA′‖2F (1 + α/3) ≤ ‖A′ − 1µ(A′)T ‖2F then
8: Append {C1, . . . , CO(k/α)} as children of A′ and add them to Q

Property B.2. The leaves computed by Algorithm 1 will have one of the following properties.

1. Leaf Li is at depth 1/β + 2. Denote the entire set of leaves at depth 1/β + 2 by Llow.

2. Let Lexp be the point sets for which we did not continue the recursion. For each such leaf
Li, we have ‖Li−ZiZTi Li‖2F · (1 +α) ≥ ‖Li− 1µ(Li)

T ‖2F for any rank k clustering matrix
Zi.

We can apply Observation 4.3 and Lemmas 4.4 and 4.5 to the resulting clustering just like
in Section 4. The only difference is a slight adjusting of parameters.

Observation B.3. T has at most O
(
(k/α)O(1/β)

)
many nodes.

Lemma B.4. ∑
L∈Llow

‖L− 1µ(L)T ‖2F ≤
(

1

1 + α/3

)1/β

·OPTk.

For any α−1, β−1 ∈ poly(ε−1), Algorithm 2 can be run in polynomial time. Using a very
similar line of reasoning as in Theorem 5.3, we then obtain the following theorem.

Theorem B.5. Let A be an n by d matrix corresponding to n points in d-dimensional Euclidean
space. There exists a linear dimension reduction with offset c given by a matrix B ∈ Rn×m where

m ∈ O
(
log k+log 1/δ

ε4
log 1

ε

)
such that for all rank k clustering matrices X,

(1− ε)‖A−XXTA‖2F ≤ ‖B −XXTB‖2F + c ≤ (1 + ε)‖A−XXTA‖2F

with probability 1 − δ. For every fixed constant ε, the dimension reduction can be computed in
polynomial time.

Proof. Let Y be the clustering matrix induced by the set of leaves. Set c =
∑
L`∈Lexp ‖L` −

1µ(L`)T ‖2F . We sample S ∈ Rd×m from a distribution satisfying the bounds given by Theo-
rem 2.5 and Lemma 2.6 and set B := Y Y TAS. We invoke Lemma 2.6 for Y Y TA, i.e. the
pairwise distances between all rows of Y Y TA are preserved and for any clustering matrix X,
we have with probability 1− δ

‖(Y Y TA−XXTY Y TA)S‖2F = (1± ε)‖Y Y TA−XXTY Y TA‖2F . (18)

To use Lemma 4.5, we again consider ∆exp and ∆cheap. The former is equal to α · c by

Property B.2. The latter is at most
(

1
1+α/3

)1/β
·OPTk due to Lemma B.4. Further, for every

cluster (leaf) Li induced by Y , let Zi be the rank k clustering matrix induced by X in Li.
Define the rank k · k′ clustering matrix Z as the concatenation of all Zi and let A′ = ZZTA.
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Again, applying the second statement of Lemma 2.3, we then have XXTZZT = XXT and
Y Y TZZT = Y Y T . Further following Lemma 5.4, we have the identities

‖A−XXTA‖2F = ‖A− ZZTA‖2F + ‖A′ −XXTA′‖2F (19)

‖A′ − Y Y TA′‖2F ≤ ∆cheap + ∆exp (20)∣∣‖A− ZZTA‖2F − c∣∣ ≤ 3∆exp + ∆cheap. (21)

We then have

|‖A−XXTA‖2F − (‖B −XXTB‖2F + c)|
= |‖A−XXTA‖2F − (‖Y Y TAS −XXTY Y TAS‖2F + c)|
(18)

≤ |‖A−XXTA‖2F − (‖Y Y TA−XXTY Y TA‖2F + c)|+ ε‖Y Y TA−XXTY Y TA‖2F
(19)
= |‖A′ −XXTA′‖2F + ‖A− ZZTA‖2F − (‖Y Y TA′ −XXTY Y TA′‖2F + c)|

+ε‖Y Y TA−XXTY Y TA‖2F
(21)
= |‖A′ −XXTA′‖2F − ‖Y Y TA′ −XXTY Y TA′‖2F |+ 3∆exp + ∆cheap

+ε‖Y Y TA−XXTY Y TA‖2F
Lem. 2.1
≤ |‖A′ −XXTY Y TA′‖2F − ‖Y Y TA′ −XXTY Y TA′‖2F |

+‖XXTA′ −XXTY Y TA′‖2F + 3∆exp + ∆cheap + ε‖Y Y TA−XXTY Y TA‖2F
Lem. 2.4
≤

(
1 +

1

ε

)
|‖A′ − Y Y TA′‖2F + ε · ‖Y Y TA′ −XXTY Y TA′‖2F |

+‖XXT (I − Y Y T )A′‖2F + 3∆exp + ∆cheap + ε‖Y Y TA−XXTY Y TA‖2F
Lem. 4.5
≤

(
1 +

1

ε

)
|‖A′ − Y Y TA′‖2F + ε · ‖Y Y TA′ −XXTY Y TA′‖2F |

+4∆exp + 2∆cheap + ε‖Y Y TA−XXTY Y TA‖2F
(20)

≤
(

1 +
1

ε

)
(∆cheap + ∆exp) + 4∆exp + 2∆cheap + 2ε‖Y Y TA−XXTY Y TA‖2F

Lem. 4.6
≤ 5

ε
(∆exp + ∆cheap) + 2ε · 9(1 + α/3)3 · ‖A−XXTA‖2F

Lem. B.4
≤ 5

ε

((
1

1 + α/3

)1/β

·OPT + α ·OPT

)
+ 162ε · ‖A−XXTA‖2F

≤

(
5

ε

((
1

1 + α/3

)1/β

+ α

)
+ 162ε

)
· ‖A−XXTA‖2F

We set α = ε2 and β = ε2

6 log 1/ε2
. Then the above bounds yields 172ε · ‖A−XXTA‖2F . Rescaling

ε completes the proof of the approximation. By Observation B.3, Y Y TA has O
(
(k/α)O(1/β)

)
distinct rows. Hence a target dimension of

logO((k/α)O(1/β))
ε2

∈ O
(
log k/ε
ε4

log 1
ε

)
is sufficient.

Theorem B.5 can be used in a distributed environment to solve k-means in a dimension
efficient way given that the number of servers are less than O(log n), in which case Theorem 5.3
gives better bounds. Assume that the number of servers is at most t. Each server runs Al-
gorithm 2 locally. The servers then sample a suitable sketching matrix of target dimension

O
(
log t·k/ε

ε4
log 1

ε

)
. By the union bound, this sketch preserves the pairwise rows between all

rows. After this, any distributed clustering algorithm may be run on the (now low-dimensional)
point set. In the following, we describe a more substantial application of Algorithm 2 to coresets.
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A Brief Remark on Coresets for k-Means

Coresets are a loosely defined concept for aggregating and compressing data that has found
applications for numerous problems beyond clustering. Generally speaking coresets aim to
summarize the data set such that we can answer any given query up to a small (typically (1±ε)
factor) distortion. Most (but not all) coreset definitions satisfy composability. In other words,
coresets are closed under union, i.e. given coresets P1 of A1 and P2 of A2, then P1 ∪ P2 is a
coreset of A1 ∪A2. This feature makes coresets extremely flexible and applicable in a variety of
settings such as distributed computing and streaming. The most general and powerful definition
of coresets for k-means is due to Feldman et al. [33]:

Definition C.1. Let A be a set of n points in d dimensional Euclidean space, let k be a non-
negative integer, let cA be a constant possibly depending on A, and let ε > 0. Then a set P is
an (ε, k)-coreset if there exists a weight function w : P → R+ such that for any candidate set
of centers C∣∣∣∣∣∣

∑
p∈A

min
µ∈C
‖p− µ‖2 −

∑
q∈P

min
µ∈C

w(q) · ‖q − µ‖2 + cA

∣∣∣∣∣∣ ≤ ε ·
∑
p∈A

min
µ∈C
‖p− µ‖2

Reference Size (Number of Points)

Low Dimensions

Har-Peled, Mazumdar (STOC’04) [36]
O(kε−d log n)

Frahling, Sohler (STOC’05) [34]

Har-Peled, Kushal (DCG’07) [35] O(k3ε−(d+1))

High Dimensions

Chen (Sicomp’09) [19] O(d2k2ε−2 log5 n)

Langberg, Schulman (SODA’10) [43] O(d2k3ε−2)

Feldman, Langberg (STOC’11) [31] O(dkε−4)

Feldman et al. (SODA’13) [33] O(k2ε−6)

Cohen et al. (STOC’15) [24] O(k2ε−5)

here O(kε−8)

Table 1: Comparison of memory demands, where lower order factors are suppressed and the
memory to store a d-dimensional point is not specified. The constructions for high dimensions
do not treat d as a constant and succeed with constant probability.

Intuitively, we consider a set of points P to be a k-means coreset of A, if for any set of
candidate centers C of size at most k the (possibly weighted) cost of clustering P to C is ap-
proximately equal to the cost of clustering A to to C. The definition is similar to Definition 2.2,
but there is a crucial difference. The coreset guarantee applies to all locally optimal assignments
to k centers in d-dimensions. The cost-preserving sketch guarantee applies to the means of all
possible clustering. Neither definition is trivially stronger than the other.

Work on coresets for k-means includes [9, 16, 17, 19, 32, 33, 34, 35, 36, 43], with the current
state of the art being the sensitivity framework due to Feldman and Langberg [31]. For an
overview of the current bounds, we refer to Table 1. The sensitivity framework yields coresets
of size O(kdε−4) points. Using dimension reduction techniques by Feldman et al. [33] and Cohen
et al. [24], the dependency on d may be replaced by k/ε. We note that Theorem B.5 cannot
be applied as a black box, as the original space is not preserved after a random projection onto
Oε(log k) dimensions, whereas the dimension-reduction techniques by [24, 33] reduce the rank
of A in the original space. We will instead use terminal embeddings that preserve the entire
space.
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Definition C.2 (Terminal Embeddings). Let ε ∈ (0, 1) and let A ⊂ Rd be arbitrary with |A|
having size n > 1. Than a mapping f : Rd → Rm is a terminal embedding of

∀x ∈ P∀y ∈ Rd, ‖x− y‖ ≤ ‖f(x)− f(y)‖ ≤ (1 + ε)‖x− y‖2.

Terminal embeddings for Euclidean spaces were studied in the work [30, 46, 50]. In partic-
ular, Mahabadi et al. [46] showed that a target dimension of m ∈ O(ε−4 log n) was sufficient,
which was very recently by Narayanan and Nelson [50] to m ∈ O(ε−2 log n), which is optimal.

Terminal embeddings preserve coresets up to small distortion; given a point set A and a
coreset P ⊂ A of A, then f(P ) remains a coreset of f(A) if f is a terminal embedding of A.
Vice versa, given a coreset P ′ ⊂ f(A) of f(A), we also know that f−1(P ′) 5 is a coreset of A.
Combining the results from section B with terminal embeddings yields the following theorem.

Theorem C.3. Let A be a set of n points in d dimensional Euclidean space and let k be a
non-negative integer. Then there exists an (ε, k)-coreset for the k-means problem consisting of
at most O(k log(k/ε) · ε−8 log ε−1) points.

Proof. We apply a terminal embedding onto the leaves of the sketching tree from Section B.
From the proof of Theorem B.5, Y Y TA is both a cost preserving sketch (albiet with no reduction
in dimension) and a coreset of A with offset c. Since Y Y TA has at most O(kO(ε−2 log ε−1))
rows, this results in a target dimension of order m ∈ O(ε−4 log ε−1 log k), due to Theorem
1.1. of Narayanan and Nelson [50]. We then compute a coreset P in the embedded space.
Applying the algorithm by Feldman and Langberg [31] (see Table 1) results in a coreset of size
O(k log kε−8 log ε−1). For any set of centers C ∈ Rd, we therefore have minµ∈C ‖x − µ‖2 =
(1 ± ε) minµ∈C ‖f(x) − f(µ)‖2 for all x ∈ P . Hence f−1(P ) is a 3ε coreset of Y Y TA, and
therefore a 7ε coreset of A with offset. Rescaling ε completes the proof.

5The mapping f is not invertable. We use the notation to refer to the points of A in the original space.
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