We consider an elliptic problem of the type where Ω is a bounded Lipschitz domain in ℝ N with a cylindrical symmetry, ν stands for the outer normal and. Under a Morse index condition, we prove cylindrical symmetry results for solutions of the above problem. As an intermediate step, we relate the Morse index of a solution of the nonlinear problem to the eigenvalues of the following linear eigenvalue problem For this one, we construct sequences of eigenvalues and provide variational characterization of them, following the usual approach for the Dirichlet case, but working in the product Hilbert space L 2 (Ω) × L 2 (Γ2).

Morse index and symmetry for elliptic problems with nonlinear mixed boundary conditions / Damascelli, L.; Pacella, F.. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS. - ISSN 0308-2105. - 149:2(2019), pp. 305-324. [10.1017/prm.2018.29]

Morse index and symmetry for elliptic problems with nonlinear mixed boundary conditions

Pacella F.
2019

Abstract

We consider an elliptic problem of the type where Ω is a bounded Lipschitz domain in ℝ N with a cylindrical symmetry, ν stands for the outer normal and. Under a Morse index condition, we prove cylindrical symmetry results for solutions of the above problem. As an intermediate step, we relate the Morse index of a solution of the nonlinear problem to the eigenvalues of the following linear eigenvalue problem For this one, we construct sequences of eigenvalues and provide variational characterization of them, following the usual approach for the Dirichlet case, but working in the product Hilbert space L 2 (Ω) × L 2 (Γ2).
2019
Maximum principle; Mixed elliptic problems; Morse index; Nonlinear boundary conditions; Symmetry
01 Pubblicazione su rivista::01a Articolo in rivista
Morse index and symmetry for elliptic problems with nonlinear mixed boundary conditions / Damascelli, L.; Pacella, F.. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS. - ISSN 0308-2105. - 149:2(2019), pp. 305-324. [10.1017/prm.2018.29]
File allegati a questo prodotto
File Dimensione Formato  
Damascelli_Morse-index_2019.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 377.65 kB
Formato Adobe PDF
377.65 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1282919
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact