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Abstract. We consider an elliptic problem of the type
−∆u = f(x, u) in Ω

u = 0 on Γ1

∂u
∂ν = g(x, u) on Γ2

where Ω is a bounded Lipschitz domain in RN with a cylindrical
symmetry, ν stands for the outer normal and ∂Ω = Γ1 ∪ Γ2.

Under a Morse index condition we prove cylindrical symmetry
results for solutions of the above problem.

As an intermediate step we relate the Morse index of a solution
of the nonlinear problem to the eigenvalues of the following linear
eigenvalue problem

−∆wj + c(x)wj = λjwj in Ω

wj = 0 on Γ1
∂wj

∂ν + d(x)wj = λjwj on Γ2

For this one we construct sequences of eigenvalues and provide
variational characterization of them, following the usual approach
for the Dirichlet case, but working in the product Hilbert space
L2(Ω)× L2(Γ2).

1. Introduction

We consider an elliptic problem with mixed nonlinear boundary con-
ditions of the type

(1.1)


−∆u = f(x, u) in Ω

u = 0 on Γ1

∂u
∂ν

= g(x, u) on Γ2

where Ω is a bounded domain in RN , N ≥ 2, ν stands for the outer
normal, and Γ1, Γ2 are relatively open nonempty disjoint subset of the
boundary ∂Ω such that
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(1.2) Γ2 is a smooth (N − 1)− submanifold , Γ1 = ∂Ω \ Γ2

and

(1.3) ∂Ω \ (Γ1 ∪ Γ2) = Γ1 ∩ Γ2 is a smooth (N − 2)− submanifold

Moreover in all of the domains that we consider Γ1 is a smooth
(N − 1)- submanifold, except possibly for a singular set Γ′ ⊂ Γ1 which
is a discrete set or a smooth (N − 2)-submanifold.

We will assume further that f = f(x, s) : Ω × R → R, g = g(x, s) :
Γ2 × R→ R are differentiable with respect to s and

(1.4) f,
∂f

∂s
, g,

∂g

∂s
are locally Hölder continuous functions in Ω× R

A solution of (1.1) will be understood in a weak sense.

Therefore we denote by H1
0 (Ω∪Γ2) the closure of C∞c (Ω∪Γ2) in the

space H1(Ω) (which coincides with the space of functions u ∈ H1(Ω)
such that the trace of u vanishes on Γ1), and say that u is a C1 bounded
weak solution of the problem, if u ∈ H1

0 (Ω∪ Γ2)∩C1(Ω)∩L∞(Ω) and
(1.5)∫

Ω

∇u · ∇ϕdx =

∫
Ω

f(x, u)ϕdx+

∫
Γ

g(x′, u)ϕdx′ ∀ϕ ∈ H1
0 (Ω ∪ Γ2)

The main aim of this paper is to prove cylindrical symmetry of solu-
tions of (1.1), both positive and sign changing, in some domains with
cylindrical symmetry, by maximum principles and spectral properties
of the linearized operator at the solution.

Denoting by x = (x′, xN) a point x = (x1, . . . , xN−1, xN) ∈ RN ,
the domains we consider will be subsets of the half space RN

+ = {x =
(x1, . . . , xN) ∈ RN : xN > 0} defined in the following way.

DEFINITION 1.1. We say that a bounded domain Ω has cylindrical
symmetry if assuming that

inf{t ∈ R : (x′, t) ∈ Ω} = 0 , sup{t ∈ R : (x′, t) ∈ Ω} = b > 0

then for every h ∈ (0, b) the set

Ωh = Ω ∩ {xN = h}

is either a N −1-dimensional ball or a N −1-dimensional annulus with
the center on the xN axis, and

Ω0 = Ω ∩ {xN = 0}

is also a nondegenerate closed ball or annulus in RN−1, whose nonempty
interior in RN−1 we denote by Ω0.
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For such domains we will always assume that

(1.6) Γ2 = Ω0 ; Γ1 = ∂Ω \ Γ2

Thus Γ2 is a relatively open flat part of the boundary at the height
xN = 0, which by our assumptions is either a (N−1)- dimensional ball
or a (N − 1)- dimensional annulus.

Examples of such domains are
a half ball

(BN
R )+ = BR ∩ RN

+ = {x = (x1, . . . , xN) ∈ RN : |x| < R ; xN > 0} ,

a half annulus

(ANR1,R2
)+ = {x = (x1, . . . , xN) ∈ RN : R1 < |x| < R2 ; xN > 0} ,

a cylinder

CR,b = {x = (x′, xN) ∈ RN : |x′| < R ; 0 < xN < b} ,

an annular cylinder

CR1,R2,b = {x = (x′, xN) ∈ RN : R1 < |x′| < R ; 0 < xN < b} ,

a cone

KR,b = {x = (x′, xN) ∈ RN : |x′| < R

b
(b− xN) ; 0 < xN < b} .

Note that Γ1 is smooth in these examples, with the exceptions of the
cone at the vertex, and the cylinders at height b.

The symmetry we will get for solutions of (1.1) in cylindrical domains
in RN , N ≥ 3, is a variant of the axial symmetry known as foliated
Schwarz symmetry considered in several previous papers in connection
with Dirichlet problems (see [3], [7], [8], [13], [17], [18] , [19], [21] and
the references therein), whose definition we recall in Section 4.

We will call it sectional foliated Schwarz symmetry. Since it is mean-
ingful for N ≥ 3, we will not consider the case N = 2.

DEFINITION 1.2. Let Ω be a bounded domain with cylindrical sym-
metry in RN , N ≥ 3, and let u : Ω → R a continuous function. We
say that u is sectionally foliated Schwarz symmetric if there exists a
vector p′ = (p1, . . . , pN−1, 0) ∈ RN , |p′ = 1|, such that u(x) = u(x′, xN)
depends only on xN , r = |x′| and ϑ = arccos( x′

|x′| · p
′) and u is nonin-

creasing in ϑ.

The definition just means that the functions x′ 7→ u(x′, h) are either
radial for any h ∈ (0, b), or nonradial but foliated Schwarz symmetric
for any h ∈ (0, b) in the corresponding domain Ωh = Ω ∩ {xN = h},
with the same axis of symmetry.

The symmetry result we prove is the following.
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THEOREM 1.1. Let Ω be a bounded domain in RN , N ≥ 3, which is
cylindrically symmetric as in Definition 1.1, and Γ2 and Γ1 described
as in (1.6).

Let u ∈ H1
0 (Ω ∪ Γ2) ∩ C1(Ω) be a weak solution of (1.1), where f

and g satisfy (1.4) and have the form f(x, s) = f(|x′|, xN , s), g(x′, s) =
g(|x′|, s) (i.e. they depend on x′ through the modulus |x′|).

Assume further that f and g are strictly convex in the s- variable
and that u has Morse index µ(u) ≤ N − 1.

The u is sectionally foliated Schwarz symmetric.

Remark 1.1. An analogous result holds for the Dirichlet problem in
cylindrically symmetric domains, see Theorem 4.1.

The definition of Morse index will be recalled in Section 3.
Note that, since N ≥ 3, Theorem 1.1 applies in particular to solu-

tions with Morse index 1 or 2, which can be obtained by variational
methods (Mountain Pass or constrained minimization) for many su-
perlinear problems.

One of the ingredients to prove Theorem 1.1 is the maximum prin-
ciple, in particular we will use it in the weak version for domains with
small measure, that we derive in Section 2 as a consequence of some
Poincaré trace inequality in the space H1

0 (Ω ∪ Γ2).
In order to exploit the information on the Morse index of the solution

to get its symmetry, it is important to be able to characterize it as the
number of negative eigenvalues of an associated linear operator.

It turns out that a good eigenvalue problem to consider to this aim
is the mixed boundary conditions eigenvalue problem

(1.7)


−∆wj + c(x)wj = λjwj in Ω

wj = 0 on Γ1
∂wj

∂ν
+ d(x)wj = λjwj on Γ2

In section 3 we construct and provide the variational characterization
of the eigenvalues of this problem, following the usual approach for the
Dirichlet problems, but working in the product Hilbert space L2(Ω)×
L2(Γ2) (see Theorem 3.1).

We believe that this construction is interesting in itself.
Note that (1.7) is related to some weighted eigenvalue problem, that

has been considered in the literature. In particular in the interesting
paper [16] (see also the references therein), although a more general
problem with weights is considered, the coefficients c(x) and d(x) in
(1.7) are supposed to be nonnegative, while, dealing with linearized
operators of semilinear elliptic problems, in which case c = −∂f

∂s
, d =

−∂g
∂s

, this assumption is not reasonable, and will not be assumed by us
(see Remark 3.1 for a more detailed comment).

We also would like to point out that if we were studying harmonic
functions (i.e. if f ≡ 0 in (1.1)) then another eigenvalue problem could
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be considered, namely (3.12), in order to characterize the Morse index
of a solution (see Remark 3.2).

The paper is organized as follows.
In Section 2 we show some Poincaré trace inequality and derive some

maximum principle.
In Section 3 we present the spectral theory for the eigenvalue problem

(1.7) and characterize the Morse index of a solution of (1.1).
Finally in Section 4 we prove the symmetry result stated in Theorem

1.1.

2. Integral inequalities and Maximum Principles

Let Ω be a bounded domain in RN , N ≥ 2, with its subsets Γ1, Γ2

of the boundary , as described in (1.2), (1.3). For a mixed boundary
condition linear problem we have

THEOREM 2.1 (Strong Maximum Principle). Let v ∈ H1
0 (Ω∪Γ2)∩

C1(Ω) be a weak solution of

(2.1)


−∆v + c(x)v ≥ 0 in Ω

v ≥ 0 in Ω

v = 0 on Γ1

∂v
∂ν

+ d(x)v ≥ 0 on Γ2

with c ∈ L∞(Ω), d ∈ C0(Γ2).
Then either v ≡ 0 in Ω or v > 0 in Ω ∪ Γ2.

Proof. By the classical strong maximum principle (see e.g. [12]), if
v 6≡ 0 in Ω then v > 0 in Ω and hence, by continuity, v ≥ 0 on Γ2.

Let x0 ∈ Γ2 and suppose by contradiction that v(x0) = 0. Then
∂v
∂ν

(x0) < 0 by Hopf’s Lemma, since v is positive in Ω and vanishes

in x0. This contradicts the Neumann condition ∂v
∂ν

(x0) + d(x)v(x0) =
∂v
∂ν

(x0) ≥ 0.
So v is positive on Γ2. �

We recall now some well known inequalities in the half spaces (see
any book dealing with Sobolev Spaces, e.g. [6], [9], [14]). Let us set

RN
+ = {x = (x1, . . . , xN) ∈ RN : xN > 0} ,

RN
0 = {x = (x1, . . . , xN) ∈ RN : xN = 0} = ∂RN

+ .

THEOREM 2.2 (Sobolev and Trace inequalities in RN
+ ). If N ≥ 3

there exist constants C1, C2 > 0 such that

(2.2) (

∫
RN

+

|v|
2N
N−2 dx)

N−2
2N ≤ C1(

∫
RN

+

|∇v|2 dx)
1
2

(2.3) (

∫
RN

0 =∂RN
+

|v|
2N−2
N−2 dx)

N−2
2N−2 ≤ C2(

∫
RN

+

|∇v|2 dx)
1
2
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for any v ∈ H1(RN
+ ) (where in the last inequality the value of v on Γ2 is

to be understood in the sense of traces of functions in Sobolev Spaces).

Let us now consider a cylindrically symmetric bounded domain Ω in
RN , N ≥ 3, with its subsets Γ1, Γ2 of the boundary, as described in
Definition 1.1 and (1.6).

We take advantage of the simple geometry of our domains, and prove
all the relevant inequalities that we need starting from (2.2) and (2.3).
Of course many of the results hold in a much more general setting (see
Remark 2.1).

If v ∈ H1
0 (Ω ∪ Γ2) then the the trivial extension of v to RN

+ belongs
to H1(RN

+ ) and has vanishing trace on RN
0 \ Γ2.

As a consequence, using Hölder’s inequality, we obtain Poincaré’s
type inequalities both in Ω and on the flat boundary Γ2.

More precisely we have the following

THEOREM 2.3 (Poincaré’s inequalities in H1
0 (Ω ∪ Γ2)). Let N ≥ 2

and let Ω be a cylindrically symmetric domain. There exist constants
C1, C2 > 0 such that for any v ∈ H1

0 (Ω ∪ Γ2)

(2.4)

∫
Ω

|v|2 dx ≤ C1 (measN [v 6= 0])
2
N

∫
Ω

|∇v|2 dx

(2.5)

∫
Γ2

|v|2 dx ≤ C2 (measN [v 6= 0])
1
N

∫
Ω

|∇v|2 dx

where [v 6= 0] = {x ∈ Ω : v(x) 6= 0}.

Proof. By density we can assume that v ∈ C∞c (Ω ∪ Γ2) and we denote
by v also the trivial extension to RN

+ .
By Hölder’s and Sobolev inequalities we have that∫
Ω

|v|2 dx =

∫
[v 6=0]

|v|2 1 dx ≤ (

∫
RN

+

|v|
2N
N−2 dx)

N−2
N (measN [v 6= 0])

2
N ≤

C1 (measN [v 6= 0])
2
N

∫
RN

+

|∇v|2 dx = C1 (measN [v 6= 0])
2
N

∫
Ω

|∇v|2 dx

and we get (2.4).
To get (2.5) we observe that for any x′ = (x1, . . . , xN−1) ∈ RN−1 we

have that

v2(x′, 0) = −
∫ +∞

0

∂v2

∂xN
(x′, t) dt = −2

∫ +∞

0

v(x′, t)
∂v

∂xN
(x′, t) dt

Integrating over Γ2 and using the Poincaré’s inequality (2.4) and Hölder’s
inequality, we get∫

Γ2

v2(x′, 0) dx′ ≤ 2

∫
RN

+

|v||∇v| dx ≤ 2(

∫
Ω

|v|2)
1
2 (

∫
Ω

|∇v|2)
1
2 dx ≤
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C2(measN [v 6= 0])
1
N

∫
Ω

|∇v|2 dx

�

Remark 2.1. It is well known that a pure Sobolev inequality (or trace
inequality) in H1(Ω), i.e. an inequality where in the right hand side
there is only the Lr norm of the gradient, it is not true in general (e.g.
in bounded domains, since the constant functions belongs to the space).
On the other hand it is well known that a pure Sobolev inequality and
Poincaré ’s inequality hold in H1

0 (Ω ∪ Γ2), provided Ω is a bounded
domain and Γ1 has a positive (N − 1)-dimensional Hausdorff measure
(see e.g. [14], [15] and the references therein).

PROPOSITION 2.1 (Weak maximum principle in small domains).
Let N ≥ 2 , Ω a cylindrically symmetric domain, Ω′ ⊆ Ω, α ∈ L∞(Ω′),
β ∈ L∞(∂Ω′) with ‖α‖L∞(Ω′) ≤ M , ‖β‖L∞(∂Ω′) ≤ M and v ∈ H1(Ω′).
Assume that

(2.6)


−∆v ≤ α(x)v in Ω′

v ≤ 0 on Γ′1 = ∂Ω′ ∩ RN
+

∂v
∂ν
≤ β(x) v on Γ′2 = ∂Ω′ ∩ RN

0

(this means that v+ ∈ H1
0 (Ω′ ∪ Γ′2) and

∫
Ω′
∇v · ∇ϕ ≤

∫
Ω′
α(x)vϕ +∫

Γ′2
β(x)vϕ for any ϕ ∈ H1

0 (Ω′ ∪ Γ′2), ϕ ≥ 0).

Then there exists δ > 0, depending on M , such that if measN ([v >
0]) < δ then v ≤ 0 in Ω.

Here [v > 0] = {x ∈ Ω′ : v(x) > 0}, and the conditions is satisfied in
particular if measN(Ω′) < δ.

Proof. Let us denote by v also the trivial extension to Ω, which belongs
to H1

0 (Ω ∪ Γ2). By hypothesis the nonnegative function v+ belongs to
H1

0 (Ω ∪ Γ2) and can be used as a test function, yielding∫
Ω

|∇v+|2 ≤M(

∫
Ω

(v+)2 +

∫
Γ2

(v+)2 )

On the other hand by the Poincaré’s inequalities (2.4), (2.5) we get

M(

∫
Ω

(v+)2 +

∫
Γ2

(v+)2 ) ≤

M C [ (measN ([v > 0]))
2
N + (measN ([v > 0]))

1
N ]

∫
Ω

|∇v+|2

If the measure of ([v > 0]) is sufficiently small then M C [ (measN ([v >

0]))
2
N + (measN ([v > 0]))

1
N ] < 1, which implies that v+ ≡ 0 in Ω. �
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3. Morse index and Spectral theory

In this section we consider mixed boundary problems in general
bounded domains, i.e. we suppose that Ω is a bounded domain in
RN , N ≥ 2, and Γ1, Γ2 are relatively open nonempty disjoint subset of
the boundary ∂Ω that satisfy (1.2), (1.3).

Let us recall the following definition, for solutions of (1.1).

DEFINITION 3.1. Let u be a C1(Ω ∪ Γ2) solution of (1.1).

i) We say that u is stable (or that has zero Morse index) if the
quadratic form

(3.1) Qu(ψ; Ω) =

∫
Ω

|∇ψ|2 −
∫

Ω

∂f

∂u
(x, u)|ψ|2dx−

∫
Γ2

∂g

∂u
(x, u)|ψ|2dx′

satisfies Qu(ψ; Ω) ≥ 0 for any ψ ∈ C1
c (Ω ∪ Γ2).

ii) u has Morse index equal to the integer µ = µ(u) ≥ 1 if µ is
the maximal dimension of a subspace of C1

c (Ω ∪ Γ2) where the
quadratic form is negative definite.

iii) u has infinite Morse index if for any integer k there is a k-
dimensional subspace of C1

c (Ω ∪ Γ2) where the quadratic form
is negative definite.

In general, to handle the definition it is convenient to relate the
Morse index to the number of negative eigenvalues of a suitable linear
eigenvalue problem. We consider the following one

−∆wj + c(x)wj = λjwj in Ω

wj = 0 on Γ1
∂wj

∂ν
+ d(x)wj = λjwj on Γ2

with

c = −∂f
∂u

, d = −∂g
∂u

Remark 3.1. Some other eigenvalue problems with weights have been
considered in the literature (see [2], [10], [16] and the references therein).
In particular in [16] the eigenvalue problem{

−∆wj + c(x)wj = λjm(x)wj in Ω
∂wj

∂ν
+ d(x)wj = λj n(x)wj on ∂Ω

with positive weights m, n is considered and the eigenvalues sequence
constructed by constrained minimization.

In that paper the weights can also vanish in part of the domain, but
the nonnegativity of the coefficients c, d is assumed (or more generally
coercivity of the corresponding operator), while in the applications to
nonlinear problems as (1.1) many choices of nonlinearities f and g can
lead instead to negative or sign changing coefficients and noncoercive
operator (e.g. the case of many superlinear problems). Therefore when
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dealing with Morse index properties we prefer to consider problems
without weights but with possibly negative or sign changing coefficients
(having bounded negative parts).

We now construct the eigenvalues sequence and prove the variational
characterization of the eigenvalues following the standard methods used
for Dirichlet problems (based on the theory of positive compact selfad-
joint operators) by working in the product space L2(Ω) × L2(Γ2) (we
will give all the details in the sequel).

Since Γ1 has a positive (N − 1) dimensional Hausdorff measure, the
scalar product in the Hilbert space H1

0 (Ω ∪ Γ2), can be defined by

(f, g)H1
0 (Ω∪Γ2) =

∫
Ω

∇f · ∇g dx

We will denote by the same symbol a function belonging to H1
0 (Ω∪Γ2)

and its trace on the boundary.
Let us consider the bilinear form in H1

0 (Ω ∪ Γ2) defined by

(3.2) B(u, ϕ) =

∫
Ω

[∇u · ∇ϕ+ cuϕ] +

∫
Γ2

duϕ

where we suppose that

(3.3) c− ∈ L∞(Ω) , d− ∈ L∞(Γ2)

and

(3.4) c ∈ L
N
2 (Ω) , d ∈ LN−1(Γ2)

if N ≥ 3, while c and d can belong to any Lq space, q ≥ 1, if N = 2.

Let us define, together with the bilinear form B defined in (3.2), the
bilinear form

(3.5) BΛ(u, ϕ) =

∫
Ω

[∇u · ∇ϕ+ (c+ Λ)uϕ] +

∫
∂Ω

(d+ Λ)uϕ

for Λ ≥ 0.
Since (3.3) and (3.4) hold, B and BΛ are continuous symmetric bilin-

ear forms on H1
0 (Ω∪Γ2), and there exists Λ ≥ 0 such that BΛ is coercive

in H1
0 (Ω ∪ Γ2), i.e. it is an equivalent scalar product in H1

0 (Ω ∪ Γ2).

Let us consider the Hilbert space V = L2(Ω) × L2(Γ2), with the
scalar product ( (f1, f2) · (g1, g2) ) =

∫
Ω
f1 g1 dx+

∫
Γ2
f2 g2 dx

′.

We identify f = (f1, f2) ∈ V with the continuous linear functional

(3.6) ϕ ∈ H1
0 (Ω ∪ Γ2) 7→ (f1, ϕ)L2(Ω) + (f2, ϕ)L2(Γ2)

where as before ϕ denote also the trace of the function on Γ2.

By the Riesz representation theorem, for any f = (f1, f2) ∈ V there
exists a unique u =: T f ∈ H1

0 (Ω ∪ Γ2) such that

BΛ(u, ϕ) = (f, ϕ)V = (f1, ϕ)L2(Ω) + (f2, ϕ)L2(Γ2) ∀ ϕ ∈ H1
0 (Ω ∪ Γ2)
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i.e. u is the unique weak solution of the problem

(3.7)


−∆u+ (c(x) + Λ)u = f1 in Ω

u = 0 on Γ1

∂u
∂ν

+ (d(x) + Λ)u = f2 on Γ2

The solution u belongs to H1
0 (Ω ∪ Γ2) and

‖u‖H1
0 (Ω∪Γ2) ≤ c‖f‖V

If we identify a function u ∈ H1
0 (Ω∪Γ2) with the couple (u, Trace (u) ) ∈

V, we can consider T as a continuous linear operator T : V → V de-
fined by f = (f1, f2) 7→ (u, Trace (u) ), which maps V into V.
T is compact because of the compact embedding of H1

0 (Ω∪Γ2) in V.
Moreover it is a positive operator, since (recall that BΛ is an equivalent
scalar product in H1

0 (Ω ∪ Γ2) )

(Tf, f)V = (u, f)V = BΛ(u, u) > 0 if f = (f1, f2) 6= 0, so that u 6= 0,

and it is also selfadjoint.
Indeed if Tf = u, Tg = v, i.e

BΛ(u, φ) = (f, φ)V, BΛ(v, φ) = (g, φ)V, then

(Tf, g)V = (u, g)V = (g, u)V = BΛ(v, u) = BΛ(u, v) =

(f, v)V = (f, Tg)V.

Thus, by the spectral theory of positive compact selfadjoint operators
in Hilbert spaces there exist a nonincreasing sequence {µΛ

j } of positive

eigenvalues with limj→∞ µ
Λ
j = 0 and a corresponding sequence {wj} ⊂

H1
0 (Ω ∪ Γ2) of eigenvectors such that T (wj) = µΛ

j wj and wj is an
orthonormal basis of V.

Putting λΛ
j = 1

µΛ
j

then wj solve the problem
−∆wj + (c(x) + Λ)wj = λΛ

j wj in Ω

wj = 0 on Γ1
∂wj

∂ν
+ (d(x) + Λ)wj = λΛ

j wj on Γ2

Translating, and denoting by λj the differences λj = λΛ
j − Λ, we con-

clude that there exist a sequence {λj} of eigenvalues, with −∞ < λ1 ≤
λ2 ≤ . . . , limj→+∞ λj = +∞, and a corresponding sequence of eigen-
functions {wj} that weakly solve the systems

(3.8)


−∆wj + c(x)wj = λjwj in Ω

wj = 0 on Γ1
∂wj

∂ν
+ d(x)wj = λjwj on Γ2

Moreover by elliptic regularity theory the eigenfunctions wj belong at
least to C1(Ω).
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We now collect in the next theorem the variational formulation and
some properties of eigenvalues and eigenfunctions.

THEOREM 3.1. Suppose that (3.3) and (3.4) hold.
There exist sequences of eigenvalues {λj}j∈N ⊂ R, with limj→∞ λj =

+∞, and eigenfunctions {wj}j∈N ⊂ H1
0 (Ω ∪ Γ2) that satisfy (3.8).

The sequence {(wj,Trace(wj))} is an orthonormal basis of the space
V = L2(Ω)× L2(Γ2).

Then defining the Rayleigh quotient

(3.9) R(v) =
B(v, v)

(v, v)L2(Ω) + (v, v)L2(Γ2)

for v ∈ H1
0 (Ω ∪ Γ2) v 6= 0

with B(., .) as in (3.2), the following properties hold, where Vk denotes
a k-dimensional subspace of H1

0 (Ω∪Γ2) and the orthogonality conditions
v⊥wk or v⊥Vk stand for the orthogonality in V.

i) λ1 = min v∈H1
0 (Ω∪Γ2) , v 6=0R(v) = min v∈H1

0 (Ω∪Γ2) , (v,v)V=1B(v, v)

ii) λm = min v∈H1
0 (Ω∪Γ2) , v 6=0 , v⊥w1,...,v⊥wm−1

R(V )

= min v∈H1
0 (Ω∪Γ2) , (v,v)V=1 , v⊥w1,...,v⊥wm−1

B(v, v) if m ≥ 2

iii) λm = min Vm max v∈Vm , v 6=0R(v)
iv) λm = max Vm−1 min v⊥∈Vm−1 , v 6=0R(v)
v) If w ∈ H1

0 (Ω ∪ Γ2), w 6= 0, and R(w) = λ1, then w is an
eigenfunction corresponding to λ1.

vi) If w is a first eigenfunction, then w+ and w− are eigenfunctions,
if they do not vanish.

vii) The first eigenfunction does not change sign in Ω and the first
eigenvalue is simple, i.e. up to scalar multiplication there is
only one eigenfunction corresponding to the first eigenvalue.

viii) If c′(x) ∈ L∞(Ω), d′(x) ∈ L∞(Γ2) and c ≥ c′, d ≥ d′ then
λ1 ≥ λ′1, where λ′1 denotes the corresponding first eigenvalue.

Proof. We just proved the existence of the eigenvalues and eigenfunc-
tions.

As before let us consider for Λ ≥ 0 the bilinear form BΛ(v, v) =
B(v, v)+Λ(v, v)V, which is an equivalent scalar product in H1

0 (Ω∪Γ2),

and define RΛ(V ) = BΛ(v,v)
(v,v)V

= BΛ(v,v)
(v,v)L2(Ω)+(v,v)L2(Γ2)

for v ∈ H1
0 (Ω ∪

Γ2) v 6= 0. Since RΛ(V ) = R(V ) + Λ, once the properties are proved
for BΛ(V ) (which is an equivalent scalar product in H1

0 (Ω∪Γ2)) and its
eigenvalues ΛΛ

j , we recover the results stated by translation. Therefore
for simplicity of notations we assume from the beginning that Λ = 0
i.e. that B(., .) is an equivalent scalar product in H1

0 (Ω ∪ Γ2).
The proofs are standard (see e.g. [9], [14] for the Dirichlet problem),
so we only sketch them.

i) The sequence {wj} is an orthonormal basis of V, and since
B(wk, wj) = λk(wk, wj)V (in particular = 0 if k 6= j), the sequence
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{(λj)−
1
2 wj} is an orthonormal basis of H1

0 (Ω ∪ Γ2). It follows that if
u =

∑∞
k=1 dkwj is the Fourier expansion of a function u in V, the series

converges to u in H1
0 (Ω ∪ Γ2) as well. If now (u, u)V =

∑∞
k=1 d

2
k = 1,

then B(u, u) =
∑

k λkd
2
k ≥ λ1

∑
k d

2
k = λ1 and i) follows.

ii) If v⊥w1, . . . , wm−1 and (v, v)V = 1), then v =
∑∞

k=m dkwj and as
before B(v, v) ≥ λm and since B(wm, wm) = λm ii) follows.
iii) If dim (Vm) = m and {v1, . . . , vm} is a basis of Vm, there ex-
ists a linear combination 0 6= v =

∑m
i=1 αivi which is orthogonal to

w1, . . .wm−1 (m coefficients and m − 1 unknown), so that by ii) we
obtain that max v∈Vm , v 6=0R(v) ≥ λm. On the other hand if Vm =
span (w1, . . . , wm) then max v∈Vm , v 6=0R(v) ≤ λm, so that iii) follows.

iv) The proof is similar. If {v1, . . . , vm−1} is a basis of an m − 1-
dimensional subspace Vm−1, there exists a linear combination 0 6=
w =

∑m
i=1 αiwi of the first m eigenfunctions which is orthogonal to

Vm−1, and R(w,w) ≤ λm. So min v⊥∈Vm−1 , v 6=0R(v) ≤ λm, but taking
Vm = span (w1, . . . , wm−1) then min v⊥∈Vm−1 , v 6=0R(v) ≥ λm, so that
iv) follows.
v) By normalizing we can suppose that (w,w)V = 1. Let v ∈ H1

0 (Ω ∪
Γ2), t > 0. Then by i) R(w + tv) = B(w+tv,w+tv)

(w+tv)L2
≥ λ1, i.e. B(w,w) +

t2B(v, v) + 2tB(w, v) ≥ λ1 [(w,w)V + t2(v, v)V + 2t(w, v)V] = λ1 +
λ1t

2(v, v) + 2tλ1(w, v). Since B(w,w) = λ1, dividing by t and letting
t→ 0 we obtain that B(w, v) ≥ λ1(w, v)V and changing v with −v we
deduce that B(w, v) = λ1(w, v)L2 for any V ∈ H1

0 (Ω ∪ Γ2), i.e. w is a
first eigenfunction.
vi) Multiplying (3.8) by w+

1 and integrating we deduce thatB(w+
1 , w

+
1 ) ≤

λ1(w+
1 , w

+
1 ), so that by v) w+

1 is a first eigenfunction. The same applies
to w−1 .
vii) The conclusion follows from the strong maximum principle. In
fact if w+ does not vanish, it is a first eigenfunction by vi), and by the
strong maximum principle (Theorem 2.1) is strictly positive in Ω, i.e.
w > 0 in Ω if it is positive somewhere.
If w1, w2 are two eigenfunctions corresponding to λ1, they do not change
sign in Ω, so that they can not be orthogonal in L2. This implies that
the first eigenvalue is simple.
viii) Let w1 be the first eigenfunction for the system (3.8), by normal-
izing it, we can assume that (w1, w1)V = 1.
Denoting by B′ the bilinear form corresponding to the coefficients c′,
d′ we have that

(3.10) λ1 = B(w1, w1) =

∫
Ω

[ |∇w1|2 + c(w1)2 dx ] +

∫
Γ2

d(w1)2 ≥∫
Ω

[ |∇w1|2 + c′(w1)2 dx ] +

∫
Γ2

d′(w1)2 = B′(w1, w1) ≥ λ1
′

�
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We now consider a solution u of the nonlinear problem (1.1) and
the linearized eigenvalue problem at u, namely the problem (3.8), with
c(x) = −∂f

∂u
(x, u(x)), d(x) = − ∂g

∂u
(x, u(x)).

THEOREM 3.2. Let Ω be a bounded domain in RN . Then the Morse
index of a solution U to (1.1) equals the number of negative eigenvalues
of the linearized eigenvalue problem

(3.11)


−∆wj − ∂f

∂u
(x, u(x))wj = λjwj in Ω

wj = 0 on Γ1
∂wj

∂ν
− ∂g

∂u
(x, u(x))wj = λjwj on Γ2

Proof. Let us denote by µ(U) the Morse index as previously defined,
and by m(U) the number of negative eigenvalues of (3.11).
If the quadratic form (defined in (3.1)) Qu is negative definite on a
m-dimensional subspace of C1

c (Ω∪Γ2), by Proposition 3.1 iii) the m-th
eigenvalue λm is negative, so that m(U) ≥ µ(U).
On the other hand if there are m negative eigenvalues of problem (3.11)
in Ω, by the continuity of the eigenvalues there exists a subdomain
Ω′ ⊂ Ω where there are m negative eigenvalues and corresponding
orthogonal eigenfunctions w1, . . . , wm which by trivial extension can be
considered as functions with compact support in Ω ∪ Γ2. Regularizing
these functions we get that the quadratic form Qu is negative definite
on a subspace of C1

c (Ω∪Γ2) spanned by m linear independent functions,
so that µ(u) ≥ m(u). �

Remark 3.2. If one of the coefficients c, d is nonnegative (or more
generally if the linear operator associated is coercive on H1

0 (Ω ∪ Γ2) )
then other choices of eigenvalue problem are possible.

If e.g. c ≥ 0 a modification of the preceeding construction yields a
a compact operator in the space L2(Γ2) and a corresponding sequence
of eigenvalues of the problem

−∆wj + c(x)wj = 0 in Ω

wj = 0 on Γ1
∂wj

∂ν
+ d(x)wj = λ′′jwj on Γ2

This case occurs in particular in the study of harmonic functions sub-
jected to nonlinear boundary conditions, that has been studied in recent
papers (see e.g. [1], [4] ). In this case f ≡ 0 in the nonlinear problem,
so that c ≡ 0 in the linearized one, and the previous eigenvalue problem
becomes

(3.12)


−∆wj = 0 in Ω

wj = 0 on Γ1
∂wj

∂ν
+ d(x)wj = λ′′jwj on Γ2
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In any case the eigenvalues share the same variational characteriza-
tion as the eigenvalues considered by us, so that the number of negative
eigenvalues is the same and characterize the Morse index of a solution.

The general linear eigenvalue problem (3.8) that we consider, with
the same eigenvalue parameter in the equation and in the nonlinear
boundary condition, has the advantage of not requiring the nonnegativ-
ity of the coefficients c, d; moreover the existence and characterization
of the eigenvalues it is natural to prove in the product space V.

4. Proof of Theorem 1.1

In this section we will prove Theorem 1.1, so we will work under the
assumptions on Ω, f , g and u stated in this theorem. The symmetry for
the solution that we are going to prove is the sectional foliated Schwarz
symmetry that we have introduced in Definition 1.2.

To compare it with the usual foliated Schwarz symmetry let us recall
this last definition.

DEFINITION 4.1. Let Ω be a rotationally symmetric domain in
RN , N ≥ 2. We say that a continuous function u : Ω → R is foliated
Schwarz symmetric if there exists a vector p ∈ RN , |p| = 1, such

that u(x) depends only on r = |x| and θ = arccos
(
x
|x| · p

)
and u is

nonincreasing in θ.

Let us observe that for solutions u of semilinear elliptic equations,
foliated Schwarz symmetry implies that either u is radial or it is strictly
decreasing in the angular variable θ (see e.g. [17], [19]).

The sectional foliated Schwarz symmetry just means to have foliated
Schwarz symmetry on any section Ωh = Ω∩ {xN = h}, h ∈ (0, b), with
respect to the same vector p′ = (p1, . . . , pN−1, 0) ∈ RN , |p′ = 1|.

For the proof of Theorem 1.1 we need to fix some notations and prove
some preliminary results.

Let N ≥ 3 and let us denote, for simplicity of notations

SN−2 = {e = (e1, . . . , eN) : |e| = 1 ; eN = 0}
i.e. SN−2 it is the set of the directions orthogonal to the direction
eN = (0, . . . , 1).

For any such direction let us define the hyperplane T (e) and the
”cap” Ω(e) as

T (e) = {x ∈ RN : x · e = 0} , Ω(e) = {x ∈ Ω : x · e > 0}
with the corresponding boundaries

Γ1(e) = (Γ1 ∩ Ω(e)) ∪ (T (e) ∩ Ω(e)) ; Γ2(e) = Γ2 ∩ (Ω(e) \ T (e))

Moreover if x ∈ Ω we denote by σe(x) = x− 2(x · e)e the reflection of
x through the hyperplane T (e) and by uσe the function u ◦ σe .
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We start by proving a sufficient condition for the sectional foliated
Schwarz symmetry.

LEMMA 4.1. Let Ω be a cylindrically symmetric domain in RN , N ≥
3, as Definition 1.1 , and let u : Ω→ R be a continuous function.

Assume that for every direction e = (e1, . . . eN) ∈ SN−2 it holds that
either u ≤ uσ(e) in Ω(e) or u ≥ uσ(e) in Ω(e).

Then u is sectionally foliated Schwarz symmetric.

Proof. It follows from an analogous sufficient condition for the foliated
Schwarz symmetry in rotationally symmetric domains, just applied to
each section Ωh, h ∈ (0, b), which is either a ball or an annulus in RN−1

(see [17], [19] and the references therein). �

Let us also observe that in general if u is a solution of a semilinear
elliptic equation, then the sectional foliated Schwarz symmetry of u
implies that either u(., xN) is radial for every xN or it is strictly de-
creasing in the angular variable θ (see the proof of Theorem 1.1 that
follows).

As we saw in previous section the Morse index of a solution u to (1.1),
with f(x, s) = f(|x′|, xN , s), g(x′, s) = f(|x′|, s), equals the number of
negative eigenvalues of the linearized eigenvalue problem

(4.1)


−∆wj − ∂f

∂u
(|x′|, xN , u(x))wj = λjwj in Ω

wj = 0 on Γ1
∂wj

∂ν
− ∂g

∂u
(|x′|, u(x))wj = λjwj on Γ2

in the whole domain Ω.

Now we consider a similar eigenvalue problem but in the caps Ω(e),
and we denote by λej and ϕej , j ∈ N, the corresponding eigenvalues and
eigenfunctions:

(4.2)


−∆ϕe

j −
∂f
∂u

(|x′|, xN , u)ϕe
j = λejϕ

e
j in Ω(e)

ϕe
j = 0 on (Γ1(e)) ∪ T (e)

∂ϕe
j

∂ν
− ∂g

∂u
(|x′|, u)ϕe

j = λejϕ
e
j on Γ2(e)

The same properties as for the eigenvalues and eigenfunctions defined
by (4.1) hold. In particular if we define the quadratic form

Qe
u(ψ) =

∫
Ω(e)

|∇ψ|2−
∫

Ω(e)

∂f

∂u
(|x′|, xN , u)|ψ|2dx−

∫
Γ2(e)

∂g

∂u
(|x′|, u)|ψ|2dx′

for ψ ∈ H1
0 (Ω(e) ∪ Γ2(e)), and the Rayleigh qoutient

Re(v) =
Qe
u(v)

(v, v)L2(Ω(e)) + (v, v)L2(Γ2(e))

for v ∈ H1
0 (Ω(e) ∪ Γ2(e)), v 6= 0, then

(4.3) λe1 = min v∈H1
0 (Ω(e)∪Γ2(e)) , v 6=0 R

e(v)
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Note that the first eigenfunction ϕe := ϕe1 does not change sign in Ω(e).

We have

LEMMA 4.2. Let u be a solution of problem (1.1) with Morse index
µ(u) ≤ N − 1. Then there exists a direction e ∈ SN−2 such that the
first eigenvalue λe1 ≥ 0.

Proof. The proof is immediate if the Morse index of the solution satis-
fies µ(u) ≤ 1.

In fact in this case for any direction e at least one amongst λe1 and λ−e1

must be nonnegative, otherwise taking the corresponding first eigen-
functions we would obtain a 2-dimensional subspace of H1

0 (Ω ∪ Γ2)
where the quadratic form Qe

u is negative definite.
So let us assume that 2 ≤ j = µ(u) ≤ N − 1.

Denote by wk the eigenfunctions of problem (4.1), and for any direc-
tion e ∈ SN−2 let us consider the function

ψe(x) =


(

(ϕ−e
1 , w1)V

(ϕe
1 , w1)V

) 1
2
ϕe1(x) if x ∈ Ω(e)

−
(

(ϕe
1 , w1)V

(ϕ−e
1 , w1)V

) 1
2
ϕ−e1 (x) if x ∈ Ω(−e)

( let us recall that V = L2(Ω) × L2(Γ2) and in the scalar product in
the space V we consider the trivial extension to Ω of the eigenfunctions
ϕe := ϕe1).

The mapping e 7→ ψe is a continuous odd function from SN−2 to
H1

0 (Ω ∪ Γ2) and, by construction, (ψe , w1)V = 0.
Therefore the function h : SN−2 → Rj−1 defined by

h(e) = ((ψe , w2)V, . . . , (ψ
e , wj)V)

is an odd continuous mapping, and since j−1 < N−1, by the Borsuk-
Ulam Theorem it must have a zero. This means that there exists
a direction e ∈ SN−2 such that ψe is orthogonal to all the eigen-
functions w1, . . . , wj. Since µ(u) = j this implies that Qu(ψ

e; Ω) =
Bu(ψ

e, ψe) ≥ 0, which in turn implies that either Qu(ϕ
e; Ω(e)) ≥ 0

or Qu(ϕ
−e; Ω(−e)) ≥ 0, i.e. either λe1 or λ−e1 is nonnegative, so the

assertion is proved.
�

Proof of Theorem 1.1. For simplicity of notations we first consider the
case N = 3.

Let e ∈ SN−2 the direction found in Lemma 4.2 such that λe1 ≥ 0
and v = uσ(e) the corresponding reflection of u, so that (u − v)± ∈
H1

0 (Ω(e)∪Γ2(e)). Since f and g are strictly convex functions, if u > v

then f(|x|,u)−f(|x|,v)
u−v < ∂f

∂u
(|x|, u) and g(|x|,u)−g(|x|,v)

u−v < ∂g
∂u

(|x|, u).
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It follows, multiplying by (u − v)+ the equations satisfied by u and
v and subtracting, that if (u− v)+ 6≡ 0, then

(4.4)

0 =

∫
Ω(e)

|∇(u− v)+|2 dx−
∫

Ω(e)

f(|x|, u)− f(|x|, v)

u− v
|(u− v)+|2 dx−

−
∫

Γ2(e)

g(|x|, u)− g(|x|, v)

u− v
|(u− v)+|2 dx′ >∫

Ω(e)

|∇(u− v)+|2 dx−
∫

Ω(e)

∂f

∂u
(|x|, u)u− v|(u− v)+|2 dx−

−
∫

Γ2(e)

∂g

∂u
(|x|, u)u− v|(u− v)+|2 dx′

Since (u−v)± ∈ H1
0 (Ω(e)∪Γ2(e)) and λe1 ≥ 0 it follows that (u−v)± ≡

0, i.e.
u ≤ v = uσ(e) in Ω(e)

There are now two cases.

CASE 1 : u− v 6≡ 0 in Ω(e).

If this is the case then u < v in Ω(e) by the strong maximum prin-
ciple, and to conclude that there is a direction e′ ∈ SN−2 such that
u ≡ uσ(e′) and that u is sectionally foliated Schwarz symmetric we per-
form a rotating plane procedure as in [3], [19], which is the analogous
for rotations of the Alexandrov-Serrin Moving Plane Method ([20], [11])
as generalized in [5].

More precisely if e = eϑ0 = (cos(ϑ0), sin(ϑ0), 0) is a direction and
u < uσ(eϑ0

) in Ω(eϑ0), we consider the set

Θ = {ϑ > ϑ0 : u < uσ(eϑ′ )
in Ω(eϑ′) ∀ϑ′ ∈ (ϑ0, ϑ)}

We show now that the set Θ is nonempty and contains all the angles
ϑ greater than and close to ϑ0.

In fact we can take a compact K ⊂ Ω such that the measure |Ω \K|
is small, and where m = minK(uσ(eϑ0

) − u) > 0. By continuity if ϑ is

close to ϑ0 we have that uσ(eϑ) − u ≥ m
2
> 0 in K and if Ω′ = Ω \K

and Γ′1 = ∂Ω′ ∩ RN
+ , we have that uσ(eϑ) − u ≥ 0 on Γ′1.

Since f and g are locally Lipschitz, it follows that uσ(eϑ)−u satisfies
a linear problem as (2.6).

By the weak maximum principle 2.1 we get that u ≤ uσ(eϑ) in Ω′ =
Ω \K and hence in Ω(eϑ).

So the set Θ is nonempty and contains all the angles ϑ greater than
and close to ϑ0.

Moreover it is bounded above by ϑ0 +π, since considering the oppo-
site direction the inequality between u and the reflected function get
reversed.

If ϑ1 = sup Θ, we claim that u ≡ uσ(eϑ1
) in Ω(eϑ1).
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For if this is not the case by the strong maximum principle (since
by continuity u ≤ uσ(eϑ1

) in Ω(eϑ1) ) we would have u < uσ(eϑ1
) in

Ω(eϑ1), and using again the maximum principle in small domains and
the previous technique we would get u < uσ(eϑ) in Ω(eϑ) for ϑ > ϑ1 =
sup Θ and close to ϑ1.

Note moreover that by construction for every direction eϑ ∈ S1 either
u ≤ uσ(eϑ) or u ≥ uσ(eϑ), so that u is foliated Schwarz symmetric.

CASE 2: u ≡ uσ(e) in Ω(e).

Let us consider the usual cylindrical coordinates (r, ϑ, x3) and the
function v = ∂u

∂ϑ
(with any value when r = 0, e.g. v(0) = 0).

Since u ∈ C1(Ω) and satisfies (1.1) with f and g satisfying (1.4), by
standard elliptic regularity (see e.g. [12]) we have that u ∈ C2(Ω) ∩
C1(Ω). Therefore if ϕ ∈ H1

0 (Ω∪Γ2) and we test (1.1) with the function
∂ϕ
∂ϑ

, we obtain easily that v = ∂u
∂ϑ

weakly satisfies the problem

(4.5)


−∆v = ∂f

∂u
(|x|, u)v in Ω(e)

v = 0 on (Γ1(e)) ∪ T (e)
∂v
∂ν

= ∂g
∂u

(|x|, u)v on Γ2(e)

There are now two possibility: either ∂u
∂ϑ
≡ 0, i.e. u is sectionally

radial, or v = ∂u
∂ϑ
6≡ 0. In this latter case v is an eigenfunction, with

corresponding zero eigenvalue, of the eigenvalue problem (4.2) in Ω(e).
Since by construction λe1 ≥ 0, we have that v is the first eigenfunction,
with corresponding zero eigenvalue, so that v = ∂u

∂ϑ
is strictly positive

(or strictly negative) in Ω(e).
This implies easily that the hypothesis in Lemma 4.1 holds (see [19]

for the case of the Dirichlet problem in a ball or annulus), so that u is
sectionally foliated Schwarz symmetric .

In the general case, i.e. if N > 3, having found a direction e ∈ SN−2,
as in Lemma 4.2 such that λe1 ≥ 0, it suffices to apply the previous
procedure for every choice of cylindrical coordinates (r, ϑ, x′′, xN), with
x′′ ∈ RN−3, with respect to a couple of direction e, e′ ∈ SN−2 which
determines the plane of the variables (r, ϑ).

This implies again that the hypothesis of Lemma 4.1 is satisfied, so
that u is sectionally foliated Schwarz symmetric. �

We end by remarking that exactly the same arguments in the pre-
vious proof show that an analogous theorem holds for the Dirichlet
problem in cylindrically symmetric domains:

THEOREM 4.1. Let Ω be a bounded domain in RN , N ≥ 3, which
is cylindrically symmetric as in Definition 1.1. Let u ∈ H1

0 (Ω)∩C1(Ω)
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be a weak solution of the problem

(4.6)

{
−∆u = f(|x|, u) in Ω

u = 0 on ∂Ω

where f has the form f(x, s) = f(|x′|, xN , s), (i.e. f(x′, xN , s) depends
on x′ through the modulus |x′|) and f and ∂f

∂s
are locally Hölder con-

tinuous functions in Ω× R.
Assume further that f is strictly convex in the s- variable and that

u has Morse index µ(u) ≤ N − 1.
The u is sectionally foliated Schwarz symmetric.
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[10] J. Garcia-Meliàn, J.D. Rossi, J.C. Sabina de Lis Existence and Uniqueness of
Positive Solutions to Elliptic Problems with Sublinear Mixed Boundary Condi-
tions, Comm. Contemp. Math 11, 2009, pp. 585-613

[11] B. Gidas, W.M. Ni, L. Nirenberg, Symmetry and related properties via the
maximum principle, Comm. Math. Phys. 68, 1979, pp. 209-243

[12] D.Gilbarg, N.S.Trudinger Elliptic partial differential equations of second order,
2nd edition, 1983, Springer

[13] F. Gladiali, F. Pacella, T. Weth, Symmetry and Nonexistence of low Morse
index solutions in unbounded domains, J. Math. Pures Appl. (9) 93 (5), 2010,
pp. 536-558.

[14] S. Kesavan, Topics in Functional Analysis and applications, 1989 Wiley-
Eastern.

[15] P.L. Lions, F. Pacella, M. Tricarico, Best Constants in Sobolev Inequalities for
Functions Vanishing on Some Part of the Boundary and Related Questions,
Indiana Univ. Math. J. 37 n.2, 1988, pp. 301-324

[16] N. Mavinga, Generalized eigenproblem and nonlinear elliptic equations with
nonlinear boundary conditions, Proc Royal Edinburgh, 142 A, 2012, pp. 137-
153



20 DAMASCELLI AND PACELLA

[17] F. Pacella, Symmetry of Solutions to Semilinear Elliptic Equations with Convex
Nonlinearities, J. Funct. Anal. 192 (1), 2002, pp. 271-282

[18] F. Pacella, M. Ramaswamy, Symmetry of solutions of elliptic equations via
maximum principle, Handbook of Differential Equations: stationary partial
differential equations. Vol. VI 2008, 269-312

[19] F. Pacella, T. Weth, Symmetry Results for Solutions of Semilinear Elliptic
Equations via Morse index, Proc. AMS 135 (6), 2007, pp 1753-1762

[20] J. Serrin, A symmetry problem in potential theory, Arch. Ration. Mech. Anal.
43, 1971, pp. 304–318.

[21] D.Smets, M. Willem Partial symmetry and asimptotic behaviour for some el-
liptic variational problem, Calc. Var. Part. Diff. Eq. 18, 2003, 57-75

Dipartimento di Matematica, Università di Roma ” Tor Vergata ” -
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P.le A. Moro 2 - 00185 Roma - Italy.

E-mail address: pacella@mat.uniroma1.it


