In this paper, we address the problem of dynamic computation offloading with Multi-Access Edge Computing (MEC), considering an Internet of Things (IoT) environment where computation requests are continuously generated locally at each device, and are handled through dynamic queue systems. In such context, we consider simple devices (e.g., sensors) with limited battery and energy harvesting capabilities. Hinging on stochastic optimization tools, we devise a dynamic algorithm that jointly optimize radio (e.g., power, energy) and computation (e.g., CPU cycles) resources, while guaranteeing a certain out of service probability (defined as the probability that the sum of local and remote queues exceeds a predefined value) and stability of the device batteries around prescribed operating levels. The method requires the solution of a convex optimization problem per time slot, and does not require apriori knowledge of channel, task and energy arrival distributions. Numerical results illustrate the advantages of the proposed method

Latency-constrained dynamic computation offloading with energy harvesting IoT devices / Merluzzi, Mattia; DI LORENZO, Paolo; Barbarossa, Sergio. - (2019), pp. 750-755. (Intervento presentato al convegno IEEE International Conference on Computer Communications (INFOCOM) tenutosi a Parigi) [10.1109/INFCOMW.2019.8845302].

Latency-constrained dynamic computation offloading with energy harvesting IoT devices

Mattia Merluzzi;Paolo Di Lorenzo;Sergio Barbarossa
2019

Abstract

In this paper, we address the problem of dynamic computation offloading with Multi-Access Edge Computing (MEC), considering an Internet of Things (IoT) environment where computation requests are continuously generated locally at each device, and are handled through dynamic queue systems. In such context, we consider simple devices (e.g., sensors) with limited battery and energy harvesting capabilities. Hinging on stochastic optimization tools, we devise a dynamic algorithm that jointly optimize radio (e.g., power, energy) and computation (e.g., CPU cycles) resources, while guaranteeing a certain out of service probability (defined as the probability that the sum of local and remote queues exceeds a predefined value) and stability of the device batteries around prescribed operating levels. The method requires the solution of a convex optimization problem per time slot, and does not require apriori knowledge of channel, task and energy arrival distributions. Numerical results illustrate the advantages of the proposed method
2019
IEEE International Conference on Computer Communications (INFOCOM)
computation offloading; mobile edge computing; internet of things; queues; stochastic optimization
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Latency-constrained dynamic computation offloading with energy harvesting IoT devices / Merluzzi, Mattia; DI LORENZO, Paolo; Barbarossa, Sergio. - (2019), pp. 750-755. (Intervento presentato al convegno IEEE International Conference on Computer Communications (INFOCOM) tenutosi a Parigi) [10.1109/INFCOMW.2019.8845302].
File allegati a questo prodotto
File Dimensione Formato  
Merluzzi_Latency-constrained_2019.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 454.17 kB
Formato Adobe PDF
454.17 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1282668
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact