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Abstract—In this paper, we address the problem of dynamic
computation offloading with Multi-Access Edge Computing
(MEC), considering an Internet of Things (IoT) environment
where computation requests are continuously generated locally
at each device, and are handled through dynamic queue systems.
In such context, we consider simple devices (e.g., sensors) with
limited battery and energy harvesting capabilities. Hinging on
stochastic optimization tools, we devise a dynamic algorithm that
jointly optimize radio (e.g., power, energy) and computation (e.g.,
CPU cycles) resources, while guaranteeing a certain out of service
probability (defined as the probability that the sum of local and
remote queues exceeds a predefined value) and stability of the
device batteries around prescribed operating levels. The method
requires the solution of a convex optimization problem per time
slot, and does not require apriori knowledge of channel, task
and energy arrival distributions. Numerical results illustrate the
advantages of the proposed method.

Index Terms—Computation offloading, Mobile Edge comput-
ing, Internet of Things, queues, stochastic optimization.

I. INTRODUCTION

The 5G revolution will radically change the concept of
mobile networks, since it aims to integrate many services on
the same network infrastructure, requiring a flexible network
design. The mobile data traffic is experiencing a very high
growth [1], also due to a plethora of new services such as
Internet of Things, Industry 4.0, automated driving, etc. In the
era of data mining, a large amount of data to be processed will
be collected/generated by sensors and/or objects, such as IoT
devices. In some applications, there is the need to process these
data within very short delays, but tiny sensors are not capable
of running sophisticated programs. For this reason, data are
usually processed in the cloud, where computation resources
are virtually infinite. However, the delay to reach the cloud
through the public internet is typically much larger than the
low latency requirements of some applications. To overcome
this issue, MEC brings cloud computing functionalities at the
edge of the network, enabling the offloading of sophisticated
applications from mobile devices and tiny sensors to small
data centers, called Mobile Edge Hosts (MEH). Typically,
MEHs are located at the Radio Access Point (RAP), or at an
aggregation point of the core network, thus guaranteeing low
latency services and high energy efficiency. However, since
MEHs have much smaller computation capabilities than the
cloud due to space limitation and CAPEX costs, the available
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resources (i.e., radio, computation, energy) have to be managed
properly to provide satisfactory Quality of Service (QoS). In
particular, since the end-to-end delay comprises a communica-
tion time and a computation time, in a user/application centric
architecture it is important to manage these resources in a joint
and dynamic manner [2].
Related works. As already mentioned, due to the limited
computation resources of MEC, resource allocation strategies
for computation offloading are an important and pivotal topic
in the research community, see, e.g., [2]–[11]. The interested
reader can refer to the recent survey in [12]. In [13], the
edge cloud is seen as a holistic system comprising com-
munication, computation, and storage resources. Computation
offloading strategies can be split into two cathegories: static
and dynamic strategies. The static formulation deals with short
time applications, in which users request for a computation
with a well defined computational demand; whereas, long-
lived applications must be treated in a dynamic fashion, since
the application continuously generates data to be processed,
without necessarily knowing apriori the statistics of the data.
Concerning the static formulation, the work [2] shows the
benefit of the joint optimization of radio and computation
resources. Recently the sinergy of MEC and mmWave com-
munication has been studied in [3], [4], where the authors
investigate the benefits of a high capacity radio access, taking
into account the detrimental effect of blocking events, typical
of mmWave communications. In particular, in [3], statistical
independent blocking event are considered, while in [4] the
investigation is extended to the statistical dependent events
due to large obstacles, and the overbooking of radio and
computation resources is studied as a countermeasure. In
[10], the authors jointly assign UE’s to mmWave APs and
MEHs with two different algorithms: a penalized Successive
Convex Approximation based strategy, and a many-to-one
matching game algorithm. The authors of [14] devised an
algorithm to minimize the energy consumption, in TDMA and
OFDMA systems, while in [15] the offloading decision and
the allocation of radio and computation resources are jointly
optimized. In [7], the authors investigate dynamic strategies
using stochastic optimization, with the aim of minimizing the
long-term average power consumption under constraints on
the mean rate stability of the computation queues with a single
MEH. The work [8] presents a fog-enabled D2D scenario with
an assignment algorithm between devices. User assignment is



Fig. 1: Network scenario.

also addressed in [9], with the aim of minimizing the average
delay under energy constraints, using a penalty function that
discourages frequent handovers, while hinging on a Multi-
armed bandit algorithm to learn the optimal penalty parameter.

All the aforementioned works do not address the problem
of dynamic computation offloading while keeping the com-
putation queues under a certain threshold, in order to limit
the service delay. Latency-constrained dynamic computation
offloading was first addressed in [11], where the authors in-
troduced a probabilistic constraint on the computation queues,
written as a bound on the probability of exceeding a certain
value, handling it with extreme value theory. Then, the work in
[16] extends [11] by considering a scenario with multiple APs
and MEHs, where user assignment is handled with a many-
to-one matching game with externalities. Meanwhile, energy
harvesting (EH) techniques have attracted a lot of interest
in IoT in order to cope with the battery-limited nature of
sensor devices, enabling the possibility to collect energy from
renewable sources such as wind, sun, vibration, and heat [17].
EH naturally introduce dinamicity in the problem due to the
intermittent arrivals of energy from the environment and the
variability over time of the battery levels at each sensor. In
this context, the works in [18], [19], study the optimal packet
communication strategy to maximize the net bit rates while
stabilizing the data queue in EH communications. An energy
scheduling strategy for remote estimation in the case of a
single EH sensor is proposed in [20]. Finally, a computation
offloading framework based on energy harvesting is introduced
in [6], where the authors devise an algorithm that minimizes
an execution cost comprising latency and task dropping, while
at the same time keeping the battery level stable around a
predefined value.
Contribution. In this paper, we propose the first strategy
for dynamic multi-user computation offloading with energy
harvesting IoT devices, aimed at minimizing the long-term av-

erage energy consumption under a bound on the out of service
probability, while guaranteing stability of the batteries around
a prescribed operating level. The approach is novel with
respect to the literature, since it enables dynamic computation
offloading with guarantees in terms of both QoS and energy
management. In particular, differently from [6], we consider
a dynamic multi-user scenario where task arrivals are handled
via computation queues, and we consider QoS requirements
in terms of the probability that the sum of local and remote
queues does not exceed a prescribed level. Also, we differ
from [16], which does not consider the possibility to harvest
energy from the environment, and impose QoS requirements
separately on local and remote queues. The proposed method
requires the solution of a convex problem in each time slot,
so that it can be solved using efficient numerical tools [21].
Simulation results assess the performance of our solution,
illustrating how, in its simplicity, it guarantees out of service
probability and stability of the IoT devices’ batteries.

II. PROBLEM FORMULATION

Let us consider a scenario where K devices wish to offload
computations to a MEH, which is connected to a RAP via
a high capacity backhaul, as in the example of Fig. 1. Time
is divided into slots of equal duration τ . The EH process is
modeled as successive energy packet arrivals, i.e., EA

k (t) units
of energy arrive at sensor i at the beginning of the t-th time
slot. The energy arrivals EA

k (t) are i.i.d. among different slots,
and are upper bounded by EA

max [22]. In each time slot, part
of the arrived energy, say, EH

k (t) ≤ EA
k (t), will be harvested

and stored in the battery, and it will be available for data
transmission from the next slot. Let us denote the battery level
of node k at time slot t as Bk(t). The transmit energy is subject
to the energy causality constraint ek(t) ≤ Bk(t) for all t, so
that the battery level evolves according to:

Bk(t+ 1) = Bk(t)− ek(t) + EH
k (t), for all k, t, (1)



Of course, from (1), the battery level is determined by the
balance between the energy spent for transmission [i.e., ek(t)]
and the one harvested from the environment [i.e., EH

k (t)].
From the radio perspective, letting pk(t) be the transmit

power of sensor k, and considering a fixed transmission time
interval τ , the energy consumption related to data transmission
at time t is given by ek(t) = pk(t)τ . Thus, considering a
frequency division multiple access, the maximum data rate
between sensor k and the AP at time t is given by:

Rk(t) = βk(t)W log2

(
1 +

hk(t)ek(t)

N0βk(t)Wτ

)
, (2)

where βk(t) is the portion of the bandwidth allocated to
sensor k, hk(t) is the radio channel, W is the total available
bandwidth, and N0 is the noise power spectral density. Each
sensor keeps a local (at the sensor) queue of bits to be
transmitted to offload computation to the MEH; also, the MEH
keeps the computation queues of all sensors (cf. Fig. 1). The
local data queue of sensor k, say, Ql

k(t), takes on input the
new data arrivals Ak(t), and it is drained by transferring data
to the MEH via the RAP, thus evolving as:

Ql
k(t+ 1) = max

(
Ql

k(t)− τRk(t), 0

)
+Ak(t). (3)

Similarly, the remote queue Qr
k(t) is fed by the data transmit-

ted by the sensors, and it is drained by the computation power
of the MEH, as follows:

Qr
k(t+ 1) = max (Qr

k(t)− τfk(t)Jk, 0) (4)

+ min
(
Ql

k(t), τRk(t)
)
,

where fk(t) is the total computation power (in CPU cycles/s)
assigned to sensor k during time slot t; Jk denotes the number
of bits per CPU cycle, i.e., a parameter that depends on the
specific application required by sensor k. In such a scenario,
the sum of the local and remote computation queues represents
a measure of the latency experienced by data before to be
processed by the MEH, and is denoted by:

Qtot
k (t) = Ql

k(t) +Qr
k(t). (5)

The goal is to find an optimal resource allocation strategy to
minimize the long-term average energy consumption, while
guaranteeing a bound on the out of service probability and a
stable battery level. Mathematically, the problem is cast as:

min
Ψ(t)

lim
T→∞

1

T

T∑
t=1

K∑
k=1

E {ek(t)}

subject to

(a) lim
T→∞

1

T

T∑
t=1

Pr
{

Qtot
k (t) > Qmax

k

}
≤ εk, ∀k;

(b) 0 ≤ ek(t) ≤ min (emax
k , Bk(t)) , ∀k, t;

(c) 0 ≤ fk(t) ≤ fmax, ∀k, t;

(d)

K∑
k=1

fk(t) ≤ fmax, ∀t;

(e) 0 ≤ EH
k (t) ≤ EA

k (t), ∀k, t;
(6)

where Ψ(t) =
[
{ek(t)}k, {fk(t)}k, {EH

k (t)}k
]
; εk is the out-

of-service probability, while emax
k and fmax are the energy

budget of device k and the computational power of the MEH,
respectively. The constraints have the following meaning: (a)
ensures that the probability for the total queue in (5) to exceed
a maximum value does not exceed the required out of service
probability; (b) ensures that the transmit energy of each sensor
is non negative and does not exceed the maximum energy
budget, given by the minimum between the maximum transmit
energy and the current battery level; (c) forces the computation
resources allocated to each user to be non negative and
not greater than the computation power of the MEH; (d)
guarantees that the sum of the computation resources allocated
to each user is at most equal to the computational power of the
MEH; finally, constraint (e) sets the bounds on the maximum
harvestable energy in each time slot.

III. ALGORITHM DEVELOPMENT

We handle problem (6) using stochastic optimization [23].
First of all, we define the virtual queue Yk(t) associated to the
constraint (a) in (6). Then, we equivalently recast (a) as:

lim
T→∞

1

T

T∑
t=1

E
{

1
{

Qtot
k (t) > Qmax

k

}}
≤ εk, (7)

where 1{·} is the indicator function. Since the indicator
function in (7) can be rewritten as

1
{
Qtot

k (t) > Qmax
k

}
= u

{
Qtot

k (t)−Qmax
k

}
, (8)

where u(·) denotes the unitary step function. The virtual queue
Yk(t) associated to the first constraint in (6) evolves as:

Yk(t+ 1) = max
[
0, Yk(t)

+ µ
(
u
{
Qtot

k (t+ 1)−Qmax
k

}
− εk

) ]
, (9)

where µ is a step-size used to control the convergence of the
algorithm. Note that the use of the step size does not change
the problem, since it comes just from the scalar multiplication
of both sides of constraint (7) by a factor µ. Now, using the
approach of [24], [6], to stabilize the battery level around a
desired value θk, we introduce the virtual queues B̃k(t), which
evolve as:

B̃k(t) = Bk(t)− θk, (10)

k = 1, . . . ,K, where Bk(t) is given by (1). Having introduced
the virtual queues Yk(t) and B̃k(t) for each device k, we define
the following Lyapunov function:

L(Θ(t)) =
1

2

K∑
k=1

[
Y 2
k (t) + B̃2

k(t)
]
, (11)

where Θ(t) =
[
Y(t), B̃(t)

]
, and Y(t), B̃(t) are the vectors

whose elements are the virtual queues of all sensors. Then,
the Lyapunov drift is defined as [23]:

∆(Θ(t)) , E{L(Θ(t+ 1))− L(Θ(t))|Θ(t)}, (12)

where the expectation is taken with respect to the channel and
arrival rate (of data and energy) realizations, and it depends



on the control policy. The Lyapunov drift defined in (12) leads
to the mean-rate stability of the virtual queues, i.e.,

lim
T→∞

E[Yk(T )]

T
= 0, k = 1, . . . ,K, (13)

lim
T→∞

E[B̃k(T )]

T
= 0, k = 1, . . . ,K, (14)

but it can also lead to an unnecessary energy consumption.
To balance mean-rate stability of virtual queues and long-
term average energy consumption, we introduce the drif-plus-
penalty function given by [23]:

∆p(Θ(t)) = ∆(Θ(t)) + V · E

{
K∑

k=1

ek(t)
∣∣Θ(t)

}
(15)

where V is a control parameter used to balance the afore-
mentioned energy/queues tradeoff. The proposed algorithm
proceeds by minimizing a proper upper bound of (15). In
particular, it is possible to prove that an upper bound of (15)
is given by [25]:

∆p(Θ(t)) ≤ C

+ E
{ K∑

k=1

[
µYk(t) max

(
0,max(0, Ql

k(t)− τRk(t))

+ max(0, Qr
k(t)− τfk(t)Jk) + δk(t)

)
+ B̃k(t)

(
EH

k (t)− ek(t)
)

+ V · ek(t)

]∣∣∣∣Θ(t)

}
, (16)

where C is a positive constant, and the term δk(t) is given by
δk(t) = τRk,max(t) +Ak(t)−Qmax

k + 1, with

Rk,max(t) = βk(t)W log2

(
1 +

hk(t) min (emax
k , Bk(t))

βk(t)WN0τ

)
being an upper bound on the data rate of device k at time t.
Thus, the algorithm proceeds by greedily minimizing instan-
taneous values of the upper bound in (16), thus obtaining the
following dynamic control policy:

min
Ψ(t)

K∑
k=1

[
µYk(t) max

(
0,max(0, Ql

k(t)− τRk(t))

+ max(0, Qr
k(t)− τfk(t)Jk) + δk(t)

)
+B̃k(t)(EH

k (t)− ek(t)) + V · ek(t)

]
subject to Ψ(t) ∈ Z(t)

(17)
where Z(t) is the set of feasible actions according to the
constraints (b)−(d) of problem (6). It is easy to show that (17)
is a convex optimization problem [21] when V > B̃k(t) for
all k, t1, but it has a non-differentiable objective function. To
tackle this issue, we first perform a simple change of variable,

1Exploiting the upper-bound in (20), a sufficient condition to guarantee
V > B̃k(t) is to set V > EA

max. This condition always holds in practice,
since we are interested in large values of V , which lead to low average energy
expenditures of the IoT devices.

Algorithm 1 : Dynamic Latency-constrained Computation
Offloading Algorithm with Energy Harvesting
Data: K, Nslot, τ , Jk, V , Pt, W , {Ak,max}k, {Qmax

k }k,
{εk}k, fmax. Set µ, {Yk(0)}k, {B̃k(0)}k;
For t = 1 : Nslot

(S.1): Observe the radio channels {hk(t)}k and the harvested
energy arrivals {EA

k (t)}k;
(S.2): Set the optimal harvested energies {EH

k (t)}k to

EH
k (t) = EA

k (t) · 1
{
B̃k(t) ≤ 0

}
, k = 1, . . . ,K; (19)

(S.3): Solve problem P to find the optimal transmission
energies {ek(t)}k and computation resources {fk(t)}k;
(S.4): Update Qr

k(t) as in (4);
(S.5): Observe Ak(t) and update Ql

k(t) as in (3);
(S.6): Update Bk(t) as in (1);
(S.7): Update Y l

k(t) and B̃k(t) as in (9) and (10) , respec-
tively;
End

in order to use the data rate Rk(t) as a variable of the problem.
In particular, the transmit energy is given by:

ek(t) =
βk(t)Wτ

hk(t)

[
exp

(
Rk(t) loge(2)

βk(t)W

)
− 1

]
. (18)

Then, exploiting the convex epigraph form [21], it is possible
to show that (17) can be equivalently recast as [25]:

min
Ω(t)

K∑
k=1

[
µYk(t)Φk(t) + B̃k(t)EH

k (t)

+(V − B̃k(t)) · βk(t)Wτ

hk(t)
exp

(
Rk(t) loge(2)

βk(t)W

)]
subject to

(a) 0 ≤ Rk(t) ≤ Rk,max(t), ∀k, t;
(b) 0 ≤ fk(t) ≤ fmax, ∀k, t; (P)

(c)

K∑
k=1

fk(t) ≤ fmax, ∀t;

(d) 0 ≤ EH
k (t) ≤ EA

k (t), ∀k, t;
(e) Φk(t) ≥ max(0, δk(t)), ∀k, t;
(f) Φk(t) ≥ Ql

k(t)− τRk(t) + δk(t), ∀k, t;
(g) Φk(t) ≥ Qr

k(t)− τfk(t)Jk + δk(t), ∀k, t;
(h) Φk(t) ≥ Ql

k(t)− τRk(t) +Qr
k(t)

−τfk(t)Jk + δk(t), ∀k, t;

where Ω(t) = [{Rk(t)}k, {fk(t)}k, {Φk(t)}k, {EH
k (t)}k].

Now, problem (P) is convex and differentiable, and can
be solved using powerful numerical tools as interior point
methods [21]. The MEH is the entity that runs the optimization
algorithm for resource allocation, collecting all the needed
information. In fact, almost all functions in (P) are linear,
except for (18), which is however convex. The overall dynamic
procedure is described in Algorithm 1. In particular, Step
(S.2) of Algorithm 1 is obtained by minimizing (17) with
respect to {EH

k (t)}k, with the constraint 0 ≤ EH
k (t) ≤ EA

k (t).
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Fig. 2: Average user queue length vs average user energy
consumption, for different Qmax

Since (17) is linear with respect to {EH
k (t)}k, from (19), each

node i collects the maximum harvestable energy EH
k (t) when

Bk(t) ≤ ϑk; whereas, for Bk(t) > ϑk, node k does not harvest
any energy. Consequently, merging (1) with (19), we have:

Bk(t) ≤ ϑk + EA
max, for all k, t. (20)

Step (S.3) of Algorithm 1 requires the solution of the optimiza-
tion problem P , which is convex with respect to the variables
{Rk(t)}k, {fk(t)}k, and {Φk(t)}k. Finally, the further steps
update all the batteries, queues, and virtual queues according
to (1), (3), (4), and (9).

IV. NUMERICAL RESULTS

In this section, we show the performance of our algorithm
through numerical results obtained by simulation in MATLAB
environment, using the fmincon function from the optimization
toolbox. Since problem (P) is convex, fmincon converges to
the global optimal solution very efficiently. In our simulations,
we used a carrier frequency equal to fc = 3 GHz, an available
bandwidth of 10 MHz, a noise power spectral density of
−174 dBm/Hz. The RAP is placed at the center of a square
of side 100 m, whereas the positions of the K sensors are
selected at random within the considered area. The channel
value is obtained using the Friis path-loss, and considering
a Rayleigh fading with zero mean and unit variance. We
consider a single MEH associated with the RAP, having a
computational power fmax = 3 × 109 CPU cycles/s. The
conversion parameter Jk is set to 10−1 bits/CPU cycle for all
k. The maximum transmit energy of each user is emax

k = 5 mJ,
since the maximum transmit power is Pk = 500 mW and the
transmission time interval is τ = 10 ms. In Fig. 2, we show the
tradeoff between the average user queue length and the average
user energy consumption, for different requirements on Qmax

k ,
which is chosen to be equal for all k. In this simulation,
we considered a scenario with 30 sensors, with data arrivals
uniformly distributed between 0 and Ak,avg = 5 × 103 bits
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Fig. 3: Probability of exceeding the value on the abscissa.

for all k. Also, the energy arrival rates at each sensor follow
the uniform distribution between 0 and a maximum energy
arrival EA

max = 10−4 J. We consider three different QoS
requirements given by Qmax

k = [1, 5, 10] × 106 bits, with an
out of service probability bound equal to εk = 10−2. In the
simulation, we considered 5000 time slots with τ = 10 ms,
and we averaged over 100 realizations of sensors’ position. For
the virtual queues {Yk(t)}k, we used a step-size µ = 50. The
energy/delay tradeoff is explored by letting the parameter V to
vary along the curves reported in Fig. 2. In particular, the value
of V increases going from right to left, as shown in the figure.
Thus, as we can notice from Fig. 2, increasing the value of
V , the average energy decreases. Also, the curves tend to the
bound Qmax

k at large values of V (since a lower transmission
energy determines a larger overall delay in terms of queue
length), while at the same time not exceeding this value due
to the constraint on the out of service probability. It is worth
to remark that the method becomes pretty insensitive to V
above a certain value, thus enabling flexibility in the choice
of the tradeoff parameter. The only drawback of increasing V ,
and thus finding the minimum energy value, is the larger time
needed to guarantee convergence of the algorithm.

As a further example, in Fig. 3, we show the behavior of
the queues’ reliability, defined as 1 − CDF(Q tot

k (t)), where
CDF(·) is the cumulative distribution function. In particular,
we illustrate the queues’ reliability of 4 sensors, considering
different values of Qmax

k , εk, and θk. We run the simulation for
300000 slots and we averaged the results over the last 250000
slots, selecting V = 1013. Each curve in Fig. 3 shows the
probability that Qtot

k is greater than the value on the abscissa,
while the vertical lines represent the maximum requirements
Qmax

k , k = 1, 2, 3, 4, for the queue of each sensor. From Fig.
3, we notice that the proposed method enables all sensors to
meet the required constraint on the out of service probability.
Finally, in Fig. 4, we illustrate the temporal behavior of the
battery level for the 4 sensors, using the same simulation
setting considered to obtain Fig. 3. The curves are averaged
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over 100 independent simulations. In Fig. 4, we can notice
the effectiveness of the proposed algorithm in stabilizing the
battery level of all sensors around prescribed values {θk}k,
within a precision of at most EA

max = 10−4 J, thus confirming
the theoretical finding in (20).

V. CONCLUSIONS AND FUTURE WORK

In this paper we studied the problem of dynamic resource
allocation for computation offloading with MEC, with a
constraint on the out of service probability, considering an
IoT scenario with energy harvesting low-power devices. The
problem is formulated as the minimization of the long-term
average energy consumption subject to constraints on the out
of service probability, while stabilizing the battery level of all
devices around predefined thresholds. Stochastic optimization
tools are used to solve the problem in a dynamic fashion,
without assuming apriori knowledge of channel statistics and
task arrivals. Moreover, the method defines a strategy to select
the optimum harvested energy in each time slot, without any
knowledge on the energy arrival statistics. Since the sum of the
local and remote computation queues is considered as a metric
to quantify the service delay, our algorithm naturally performs
a joint optimization of radio and computation resources. The
proposed strategy requires the solution of a convex optimiza-
tion problem in each time slot, so that it can be handled via
efficient and fast numerical tools. Several research directions
are still open considering, e.g., distributed implementations of
the proposed algorithm.
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