We study the existence of solutions of a nonlinear parabolic problem of Cauchy-Dirichlet type having a lower order term which depends on the gradient. The model we have in mind is the following: $$ u_t-div (A(t,x)nabla u|nabla u|^{p-2})=gamma |Nabla u|^q+f(t,x) quad in quad Q_T, $$ $$ u=0 quad on quad(0,T) imes partial Omega, $$ u(0,x)=u_0(x) quad in quad Omega, $$ where $Q_T=(0,T) imes Omega$, $Omega$ is a bounded domain of $mathrm{R}^N$, $Nge 2$, $1<p></p>

Existence results for a Cauchy–Dirichlet parabolic problem with a repulsive gradient term / Magliocca, Martina. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 166:(2018), pp. 102-143. [10.1016/j.na.2017.09.012]

Existence results for a Cauchy–Dirichlet parabolic problem with a repulsive gradient term

Magliocca, Martina
2018

Abstract

We study the existence of solutions of a nonlinear parabolic problem of Cauchy-Dirichlet type having a lower order term which depends on the gradient. The model we have in mind is the following: $$ u_t-div (A(t,x)nabla u|nabla u|^{p-2})=gamma |Nabla u|^q+f(t,x) quad in quad Q_T, $$ $$ u=0 quad on quad(0,T) imes partial Omega, $$ u(0,x)=u_0(x) quad in quad Omega, $$ where $Q_T=(0,T) imes Omega$, $Omega$ is a bounded domain of $mathrm{R}^N$, $Nge 2$, $1

2018
nonlinear parabolic equations; unbounded data; repulsive gradient
01 Pubblicazione su rivista::01a Articolo in rivista
Existence results for a Cauchy–Dirichlet parabolic problem with a repulsive gradient term / Magliocca, Martina. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 166:(2018), pp. 102-143. [10.1016/j.na.2017.09.012]
File allegati a questo prodotto
File Dimensione Formato  
Magliocca_Existence-results_2018.pdf

Open Access dal 01/07/2022

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 345.1 kB
Formato Adobe PDF
345.1 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1281281
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact