In this paper we give a structure theorem for the module of vector valued modular forms in the case of a three dimensional ball with the action of the Picard modular group Gamma(3)[root-3]. The corresponding modular variety of dimension 3 is a copy of the Segre cubic.

Vector-valued modular forms on a three-dimensional ball / Freitag, Eberhard; Manni, Riccardo Salvati. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9947. - 371:8(2018), pp. 5293-5308. [10.1090/tran/7343]

Vector-valued modular forms on a three-dimensional ball

Manni, Riccardo Salvati
2018

Abstract

In this paper we give a structure theorem for the module of vector valued modular forms in the case of a three dimensional ball with the action of the Picard modular group Gamma(3)[root-3]. The corresponding modular variety of dimension 3 is a copy of the Segre cubic.
2018
vector valued modular forms
01 Pubblicazione su rivista::01a Articolo in rivista
Vector-valued modular forms on a three-dimensional ball / Freitag, Eberhard; Manni, Riccardo Salvati. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9947. - 371:8(2018), pp. 5293-5308. [10.1090/tran/7343]
File allegati a questo prodotto
File Dimensione Formato  
Freitag_Vector-valued-modular_2018.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 226.64 kB
Formato Adobe PDF
226.64 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1279634
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact