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VECTOR-VALUED MODULAR FORMS

ON A THREE-DIMENSIONAL BALL

EBERHARD FREITAG AND RICCARDO SALVATI MANNI

Abstract. In this paper we give a structure theorem for the module of vector
valued modular forms in the case of a three dimensional ball with the action
of the Picard modular group Γ3[

√
−3]. The corresponding modular variety of

dimension 3 is a copy of the Segre cubic.

Introduction

Recently there has been growing interest in structure theorems for vector-valued
modular forms. One reason may be Harder’s conjecture ([5, Conjecture 3], in van
der Geer’s talk). Different methods have been developed to get structure theorems
for modules of vector-valued modular forms [3, 6, 8, 13, 16–18]. At the beginning,
the case of Siegel modular forms was studied, but since then other groups have also
found interest. For example, in the paper [6], Cléry and van der Geer determined
generators for some modules of vector-valued Picard modular forms on the two-
dimensional ball. In this paper we consider the case of a three-dimensional ball with
the action of the Picard modular group Γ3[

√
−3] (see Section 3). The corresponding

modular variety of dimension three is a copy of the Segre cubic. We obtain similar
results as in [6] but with completely different methods.

Vector-valued Picard modular forms on the n-ball Bn belong to the space of
functions that have a transformation formula related to rational representations of
the complexification of the maximal compact group of the unitary group U(1, n),
which is the group GL(1,C)×GL(n,C). Here we consider the representation

�r(k1, k2) = kr1k2 (r ∈ Z).

A similar representation in a Siegel case has been treated in [11]. We denote by
M(r) the space of modular forms f : Bn → Cn which belong to this representation.
The direct sum

M =
⊕
r∈Z

M(r)

is a module over the ring of scalar-valued modular forms.
In the case Γ3[

√
−3] this ring is generated by five forms T1, . . . , T5 of weight three

which satisfy the relation of a Segre cubic [10,15]. We will determine the structure
of the module M. For this we consider the submodule N of M, generated by ten
Cohen-Rankin brackets {Ti, Tj}. They are elements of M(5). Our main result is
that M and N agree.
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To get a proof, we first investigate N . There are some obvious relations between
the Cohen-Rankin brackets and also the Segre relation induces a relation between
them. The fact that these simple relations are defining relations (see Proposi-
tion 5.1) rests on a pure algebraic statement about differential modules which is
developed in Section 1. In Section 2 we develop the framework for vector-valued
ball modular forms and in Section 3 we describe the group of our interest Γ3[

√
−3],

the congruence group of level
√
−3 in the full Picard modular group with respect

to Q(
√
−3). We describe its ring of modular forms, the relation to the Segre cubic,

and the ramification locus.
In Section 4 we study some special modular forms which are related to the

tangent bundle of the Segre cubic. They are needed for the proof of the equality
of M and its submodule N which will be given in Section 5. Some computer
calculations are necessary. In our main result, Theorem 5.5, we also give the Hilbert
function of the module M.

The method which we use works also in a Siegel case that has been treated in
[7]. In Section 6 we describe this briefly.

We also correct some sign errors in [10]. They had no further influence to [10],
but, in the present paper, the corrections are necessary.

1. Differential modules over graded algebras

Let A =
⊕∞

d=0 Ad be a finitely generated graded algebra over a field K = A0 of
characteristic zero. We assume that A is an integral domain and denote its field of
fractions by Q(A). We consider the Kähler differential module Ω = Ω(Q(A)/K).
Recall that this is a Q(A)-vector space together with a K-linear derivation d :
Q(A) → Ω. The dimension of Ω equals the transcendental degree of Q(A) and Ω is
generated by the image of d. In the following, we denote by deg(f) the degree of
a non-zero homogeneous element of A. For two non-zero homogeneous elements of
positive degree f, g ∈ A we define {f, g} := deg(g)gdf − deg(f)fdg. Another way
to write this is

{f, g} =
gdeg(f)+1

fdeg(g)−1
d
(fdeg(g)

gdeg(f)

)
.

This is a skew-symmetric K-bilinear pairing and it satisfies the following rule:

deg(h)h{f, g} = deg(g)g{f, h}+ deg(f)f{h, g}.

Definition 1.1. We denote by N the A-module that is generated by all {f, g}
where f, g are homogeneous elements of positive degree in A.

We are interested in a finite presentation of N . There is no difficulty getting
a finite system of generators. Let A = K[f1, . . . , fm], (fi homogeneous). Then
{fi, fj} are generators of N . It is more involved to get defining relations. We use
the notation di = deg(fi). A polynomial P ∈ K[X1, . . . , Xm] is called isobaric of
weight k (with respect to (d1, . . . , dm)) if it is of the form

P =
∑

d1ν1+···+dmνm=k

aν1,...,νm
Xν1

1 · · ·Xνm
m .

Then Euler’s relation
∑m

ν=1 dν
∂P
∂Xν

Xν = kP holds.
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The ideal of relations between f1, . . . , fm is generated by isobaric polynomials.
Let R(f1, . . . , fm) = 0 be an isobaric relation. Differentiation gives

m∑
ν=1

(∂νR)dfν = 0 where ∂νR :=
∂R

∂Xν
(f1, . . . , fm).

From this relation and Euler’s relation we derive
m∑

ν=1

(∂νR){fν , fμ} = 0 (μ arbitrary).

We want to formalize this and introduce a module N ′ which is defined by the so
far known relations.

Definition 1.2. We denote by N ′ the A-module that is generated by symbols
[fi, fj ] with the following defining relations:

(1) dkfk[fi, fj ] = djfj [fi, fk] + difi[fk, fj ], [fi, fj ] + [fj , fi] = 0.

For each isobaric relation R between the f1, . . . , fm one has

(2)
m∑

ν=1

(∂νR)[fν , fμ] = 0 (μ arbitrary).

It is of course enough to take for R a system of generators of the ideal of all
relations. There is a natural surjective homomorphism

N ′ −→ N , [fi, fj ] �−→ {fi, fj}.
We notice that N is torsion free for trivial reasons, but it is not clear that N ′ is
torsion free too. Under certain circumstances, N ′ → N is an isomorphism. To
work this out, we consider an arbitrary relation in N∑

i<j

Pij{fi, fj} = 0, Pij ∈ A.

We multiply this relation by d1f1 and insert

d1f1{fi, fj} = difi{f1, fj} − djfj{f1, fi}.
Then we obtain the relation ∑

j

Pj{f1, fj} = 0,

where the elements Pj ∈ A are defined as Pj =
∑

i<j difiPij −
∑

i>j difiPji.

Let n be the transcendental degree of Q(A). We can assume that f1, . . . , fn are
independent. Then each fk, k > n, satisfies an algebraic relation Rk(f1, . . . , fn, fk)
= 0. Here Rk is an irreducible polynomial in the variables X1, . . . , Xn, Xk. Now we
make use of the relation

(∂kRk){f1, fk}+
n∑

ν=1

(∂νRk){f1, fν} = 0.

We have to use the elements (from the ring A)

Π :=
m∏

k=n+1

∂kRk, Π(k) :=
Π

∂kPk
.
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We multiply the original relation by Π:

Π
∑
j

Pj{f1, fj} = 0.

For k > n we have the formula

Π{f1, fk} = Π(k)(∂kRk){f1, fk} = −Π(k)
n∑

j=1

(∂jRk){f1, fj}.

Now we can eliminate the {f1, fk} for k > n to produce a relation between the
{f1, fi}, 2 ≤ i ≤ n. But these elements are independent. Hence the coefficients of
the relation must vanish. A simple calculation now gives the following lemma.

Lemma 1.3. Let ∑
i<j

Pij{fi, fj} = 0, Pij ∈ A.

Then the elements

Pj =
∑
i<j

difiPij −
∑
i>j

difiPji

satisfy the following system of relations:

PjΠ =

m∑
k=n+1

(∂jRk)PkΠ
(k) (1 ≤ j ≤ n).

Supplement. Conversely, these relations imply in N ′ the relation

f1Π
∑
i<j

Pij [fi, fj ] = 0.

For the proof of the Supplement we just have to notice that the calculations
above only use the defining relations of N ′. �

Let us assume that multiplication by f1Π is injective on N ′. Then we see that∑
Pij{fi, fj} = 0 implies

∑
Pij [fi, fj ] = 0. Hence N ′ → N is an isomorphism and

N ′ must be torsion free. This gives the following result.

Proposition 1.4. Assume that the f1, . . . , fn is a transcendental basis such that
each fk, n < k ≤ m, satisfies an irreducible algebraic relation

Rk(f1, . . . , fn, fk) = 0.

The homomorphism N ′ → N is an isomorphism if and only if N ′ is torsion free.
For this it suffices that multiplications by f1 and ∂kRk (n < k ≤ m) are injective
on N ′.

2. The extended ball

Let V be a complex vector space of dimension n + 1 and let 〈·, ·〉 be a non-
degenerate hermitian form of signature (1, n). We consider the projective space
P(V ) = (V − {0})/C∗ and the natural projection

V − {0} −→ P(V ), v �−→ [v].

Let

B̃ := {v ∈ V ; 〈v, v〉 > 0}
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be the set of all vectors of positive norm 〈v, v〉 > 0 and let B be its image in the
projective space. This is a model of the complex n-ball. The unitary group U(V )

acts on B and on B̃.
We choose a vector e ∈ V with positive norm 〈e, e〉 > 0 and we consider the

orthogonal complement Z = e⊥ which is a negative definite space of dimension n.
We have V = Ce⊕Z. Sometimes we write the elements v ∈ V in the form

v = Ce+ z =

(
C
z

)
.

Then we can write the elements of End(V ) as matrices

p =

(
a b
c d

)
, a ∈ C, b ∈ Z∗, c ∈ Z, d ∈ End(Z),

such that the action on V = Ce+ Z is given by(
a b
c d

)(
C
z

)
=

(
aC + b(z)
Cc+ d(z)

)
.

For the multiplication of two of such matrices one has to make use of the canonical
isomorphism Z ⊗ Z∗ → End(Z).

We denote by
BZ := {z ∈ Z; −〈z, z〉 < 1}

the complex n-ball in the space Z with respect to the positive definite form −〈·, ·〉.
There is a natural bijection

BZ
∼−→ B, z �−→ [e+ z].

We carry over the action of U(V ) to BZ and denote it by g〈z〉,
g〈z〉 := (a+ b(z))−1(c+ d(z)).

Let g ∈ GL(V ) be an element with the property g(e) = e. Then g acts on V/Ce.
We denote by P ⊂ GL(V ) the subgroup

P := {p ∈ GL(V ); p(e) = e, p acts as identity on V/Ce}.
The corresponding matrices then are of the form

p =

(
1 b
0 idZ

)
, b ∈ Z∗.

The group P is a closed complex Lie subgroup. The quotient GL(V )/P carries a
natural structure as a complex manifold. For g ∈ GL(V ), the element g(e) depends
only on the coset gP . Hence, the subset

B∗ = {gP ∈ GL(V )/P ; g(e) ∈ B̃}
is a well-defined subset of GL(V )/P . It is open and hence a complex manifold too.
There are natural (holomorphic) maps

B∗ −→ B̃ −→ B, gP �−→ g(e) �−→ [g(e)].

We consider the group

KC = GL(Ce)×GL(Z) ∼= C∗ ×GL(n,C)

as a subgroup of GL(V ) in the obvious way. The corresponding matrices are of the
form

k =

(
k1 0
0 k2

)
.
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Usually the element k1 will be identified with the corresponding complex number.
The group KC is the complexification of the maximal compact subgroup

K := U(Ce)×U(Z)

of U(V ).
The elements of KC fix the point [e] ∈ P(V ). Hence we have the natural map

KC → B∗.

Lemma 2.1. The natural map KC → B∗ gives a bijection between KC and the fibre
of the natural projection B∗ → B over [e].

Proof. The elements which stabilize [e] are of the form

g =

(
a b
0 d

)
.

They can be written in a unique way in the form g = kp, k ∈ KC, p ∈ P . �
The group KC normalizes P and hence acts on G/P by multiplication from the

right,
(gP, k) �−→ gkP, g ∈ GL(V ), k ∈ KC.

Hence B∗ → B is a principal fibre bundle with structural group KC.
As we mentioned already, the unitary group U(V ) acts on B̃. Hence it acts also

on B∗ by multiplication from the left.
We can now define vector-valued automorphic forms. Since B∗ plays the role of

an extension of the ball B, from now on we use the letter z to denote the elements
of B∗. The action of U(V ) is denoted by γz and that of KC by zk.

Definition 2.2. Let Γ ⊂ U(V ) be a subgroup, let χ be a character of Γ and let
� : KC → GL(U) be a rational representation of KC on some finite-dimensional
complex vector space. An automorphic form for (Γ, χ, �) is a holomorphic function

g : B∗ −→ U
with the transformation property

f(γzk) = χ(γ)�(k)−1f(z), with γ ∈ Γ and k ∈ K.

In the case n = 1 the usual regularity condition at the cusps has to be added.

We denote the space of these forms by [Γ, χ, �]. For trivial χ we simply write
[Γ, �]. It may happen that elements of the form ζ idV , |ζ| = 1, are contained in Γ.
The corresponding transformations of B∗ come also from KC. Hence χ and � have
to satisfy a compatibility condition if non-zero automorphic forms exist.

We explain briefly the relation to the notion of (scalar-valued) automorphic form
as it has been used by Borcherds; cf. [4, section 13]. An automorphic form in

his sense is a holomorphic function f : B̃ → C with the transformation property
f(γz) = χ(γ)f(z) and f(tz) = t−rf(z). The composition of f with the projection

B∗ → B̃ then gives an automorphic form in the sense of Definition 2.2 with respect
to the representation �(k1, k2) = kr1.

In older contexts, automorphic forms are functions on BZ transforming with
respect to an automorphy factor. We want to describe the link between the two
approaches. For this we construct a section BZ → B∗. First we construct a section
B → B̃. Each element of V can be written in the form v = Ce + z where C is a
complex number and z ∈ Z. From 〈v, v〉 > 0 it follows C 
= 0. Hence each element
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of B has a unique representative in B̃ with C = 1. This gives a section B → B̃.
Now let v = Ce + w ∈ B̃. We associate to v a linear transformation gv ∈ GL(V ),
namely

gv(xe+ y) = Cxe+ wx+ y (x ∈ C, y ∈ Z),

or, in matrix notation

gv =

(
C 0
w idZ

)
(v = Ce+ w).

We have gv(e) = v. Hence gvP is contained in B∗. This gives us the desired section

B̃ → B∗. Combining it with B → B̃ we get a section B −→ B∗. Moreover, using
the isomorphism BZ ∼= B, we get the map

σ : BZ −→ B∗, z �−→
(
1 0
z idZ

)
P.

Lemma 2.3. There is a “canonical factor of automorphy”

Jcan : U(V )× BZ −→ KC

with the property

σ(γ〈z〉)Jcan(γ, z) = γσ(z), γ =

(
a b
c d

)
.

It can be defined by the formula

Jcan

((
a b
c d

)
, z

)
=

(
a+ b(z) 0

0 d− (a+ b(z))−1(c+ d(z))⊗ b

)
.

Proof. We have

σ(γ〈z〉) =
(

1 0
(a+ b(z))−1(c+ d(z)) id

)
P, γσ(z) =

(
a+ b(z) b
c+ d(z) d

)
P.

The equation(
1 0

(a+ b(z))−1(c+ d(z)) id

)(
a+ b(z) b

0 d− (a+ b(z))−1(c+ d(z))⊗ b

)

=

(
a+ b(z) b
c+ d(z) d

)

gives the second statement of Lemma 2.3. It also implies that J is an automorphy
factor. �

We call Jcan the canonical automorphy factor. For any representation � of KC

we then can define the automorphy factor

J�(γ, z) = �(Jcan(γ, z)).

If one takes for � the tautological representation idKC
, one obtains back the canon-

ical automorphy factor.

Lemma 2.4. Let f : B∗ → Z be an automorphic form with respect to (Γ, χ, �).
Then F (z) = f(σz) has the transformation property

F (γ〈z〉) = χ(γ)J�(γ, z)F (z)

and every holomorphic F with this transformation property comes from an f .
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Proof. For γ ∈ Γ we have

F (γz) = f(σγ〈z〉) = f(γσ(z)J(γ, z)−1) = v(γ)�(J(γ, z))f(z).

�

The Jacobian transformation (derivative) JJac(g, z) gives an automorphy factor
of U(V ) with values in GL(Z). We want to relate it to the canonical automorphy
factor.

Proposition 2.5. Consider the representation

� : KC −→ GL(Z), (k1, k2) �−→ k−1
1 k2.

(Here we consider k1 ∈ GL(Ce) ∼= C∗ as a complex number.) Then

JJac(g, z) = J�(g, z) for g ∈ U(V ).

Proof. We will prove this not only for g ∈ U(V ) but for all g ∈ GL(V ). One has
to observe that both sides can be considered for arbitrary g ∈ GL(V ) as rational
functions on BZ with values in End(Z). We verify the equality for generators of
GL(V ).
1) g = k = (k1, k2) ∈ KC. We have Jcan(k, z) = k. The formula k〈z〉 = k−1

1 k2z
shows

JJac(k, z) = k−1
1 k2 = �(k) = J�(k, z).

2) g =

(
1 0
c id

)
. This acts as a translation g〈z〉 = z + c and the Jacobian is the

identity. By definition also Jcan(g, z) is the identity.

3) g =

(
1 b
0 id

)
. In this case we have

g〈z〉 = (1 + b(z))−1z.

We have

Jcan(g, z) =

(
1 + b(z) 0

0 id−(1 + b(z))−1z ⊗ b

)

and hence
J�(g, z) = (1 + b(z))−1(id−(1 + b(z))−2z ⊗ b).

It is easy to check by means of coordinates that this is the Jacobian of g. �

3. Some examples of ball quotients

We consider V = Cn+1 and the hermitian form

〈z, w〉 = z̄0w0 − z̄1w1 − · · · − z̄nwn.

We denote by

E := Z[ζ], ζ = e2πi/3,

the ring of Eisenstein integers and introduce the lattice

Ln = En+1 ⊂ V.

We denote the unitary group of Ln by Γn = U(Ln). We also have to consider the
congruence subgroup

Γn[a] = kernel(Γn −→ GL(n+ 1, E/a)) (a ∈ E).
The case a =

√
−3 is of particular interest.
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We are interested first in scalar-valued modular forms. They belong to the one-
dimensional representation �r(k) = kr1. In this case we use the notation [Γ, χ, r] =
[Γ, χ, �r] and we omit χ when it is trivial. The ring of (scalar-valued modular forms)
is

A(Γ) =
⊕
r∈Z

[Γ, r].

The structure of this ring has been determined in the four-dimensional case Γ4[
√
−3]

in [9] building on the paper [2]. The corresponding modular variety describes the
variety of marked cubic surfaces. The ring A(Γ4[

√
−3]) is rather complicated and

will not be considered here. But it is possible to derive from this four-dimensional
case several interesting cases of lower dimension. The idea is to consider a subspace
W ⊂ V of signature (1, n), n < 4, such that W ∩ E5 is a lattice (of rank n + 1).
The embedding

Ln−1 −→ Ln, a �−→ (a, 0),

gives an embedding Γn−1[
√
−3] → Γn[

√
−3]. By restriction we obtain a ring ho-

momorphism

A(Γn[
√
−3]) −→ A(Γn−1[

√
−3]).

A general result states that A(Γn−1[
√
−3]) is the normalization of the image. In

this way, when n = 3, one can prove the following result [10] (a different proof has
been given in [15]).

Theorem 3.1. The ring of modular forms A([Γ3[
√
−3]) is generated by six modular

forms T1, . . . , T6 of weight three with the defining relations

T1 + · · ·+ T6 = 0, T 3
1 + · · ·+ T 3

6 = 0.

The associated modular variety is a Segre cubic.

Explicit expressions for the Ti have been given in [10, Proposition 8.5]. Unfor-
tunately there is a sign error which we want to correct here. (This error does not
influence the rest of the paper [10].) In [10, Definition 8.1], 15 Borcherds products
B1, . . . , B15 of weight one with respect to the congruence group Γ3[3] have been
introduced. The action of the group Γ3 on the Bi has been described there in
Lemma 8.2. We give a corrected version.

The group Γ3 acts (from the right) on modular forms through (f, γ) �→ fγ , where

fγ(z) := f(γz).

In [10] it has been described that, up to constant factors, the functions Bi are
permuted under this action. Hence we can describe the action of an element g ∈ Γ3

by a list (
σ1 · · · σ15

ε1 · · · ε15

)
.

This list has to be read as follows:

Bg
i = εσi

Bσ(i).
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Lemma 3.2. The transformation group corresponding to Γ3 on the forms Bi is
generated by the following three transformations:(

8 15 7 9 2 12 4 14 3 5 11 6 1 13 10
ζ −ζ 1 1 ζ̄ −ζ ζ̄ 1 ζ −ζ̄ ζ̄ −ζ 1 ζ̄ 1

)
,

(
3 15 14 2 1 13 12 8 7 11 5 9 6 10 4
ζ ζ̄ ζ̄ −1 ζ̄ ζ 1 −ζ −ζ̄ 1 −ζ̄ 1 1 −ζ̄ 1

)
,

(
12 6 11 3 13 8 4 14 9 1 7 15 5 2 10
−ζ −ζ −ζ −ζ ζ ζ̄ −1 −1 −1 −ζ −1 −ζ ζ̄ ζ̄ −ζ̄

)
.

In [10, Sect. 8], ten linear relations between the forms B3
i have been described.

By elimination, one can produce six modular forms Ti which are linked to the Segre
cubic.

Proposition 3.3. The assignments

T1 �−→B3
1 +B3

13 −B3
15,

T2 �−→B3
1 −B3

13 +B3
15,

T3 �−→ −B3
2 −B3

13 +B3
14,

T4 �−→ −B3
2 +B3

13 −B3
14,

T5 �−→ −B3
4 −B3

11 −B3
13,

T6 �−→ −B3
6 +B3

10 −B3
15,

define an isomorphism

C[T1, . . . , T6]/〈T1 + · · ·+ T6, T 3
1 + · · ·+ T 3

6 〉
∼−→ C[B3

1 , . . . , B
3
15].

Moreover, the algebra A(Γ3[
√
−3]) is generated by the B3

i .

Now one can reproduce Lemma 8.8 in [10]. We reformulate and extend it.

Lemma 3.4. The isomorphism

C[T1, . . . , T6]/〈T1 + · · ·+ T6, T 3
1 + · · ·+ T 3

6 〉
∼−→ C[B3

1 , . . . , B
3
15]

is equivariant with respect to a surjective homomorphism Γ3 → S6 × {±1}. Here
S6 × {±1} acts on the variables Ti by permutation in combination with the sign.
This means that (σ, ε) acts by Ti �→ εTσ(i). The three transformations in Lemma 3.2
map to the three pairs

(1, 6, 4, 2, 5, 3), ε = 1; (6, 5, 2, 4, 3, 1), ε = −1; (3, 2, 4, 6, 5, 1), ε = −1.

The kernel of det3 is a subgroup of index two of Γ3 which does not contain the
negative of the unit-matrix. For this subgroup ε is the sign of σ.

(Here (a1, . . . , a6) stands for the permutation i �→ ai.)
We denote the Segre cubic defined in Proposition 3.3 by S and by R ⊂ S the

ramification locus. It can be described as follows. Let γ ∈ Γ3[
√
−3] be an element

of finite order which acts non-trivially on B3. By [1] it acts as a triflection on B3

and its fixed point set is a so-called short mirror. From Definition 8.1 in [10] we can
see that there is modular form of weight five on Γ3[

√
−3] (but with a non-trivial

multiplier system), namely χ := B1B8B11B13B14. whose set of zeros is the union
of all short mirrors. The multiplicities are one.
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Proposition 3.5. The ramification locus S ⊂ B3 is the zero locus of a modular
form χ of weight five with respect to Γ3[

√
−3] but with respect to a non-trivial

multiplier system.

We are interested in vector-valued modular forms with respect to the represen-
tation

�r

(
k1 0
0 k2

)
= kr1k2.

We denote the space of modular forms by M(r) = [Γ3[
√
−3], �r]. The direct sum

M =
⊕
r∈Z

[Γ3[
√
−3, �r]

is a module over

A = A(Γ3[
√
−3]).

We want to determine its structure.

4. The tangent bundle of the Segre cubic

We study the following situation. Let P (X0, · · · , Xn) be an irreducible homoge-
neous polynomial and let X ⊂ Pn(C) be the associated hypersurface and Xreg its
regular locus. Let D ⊂ Cn−1 be an open domain and let t0, . . . , tn be holomorphic
functions on D without zeros and such that

D −→ Xreg, z �−→ [t0(z), . . . , tn(z)],

is a holomorphic map onto Xreg . We want to describe the tangent space at a point
[b] ∈ Xreg. The projective tangent space TbX in Pn(C) is defined by the equation

n∑
i=0

(∂iP )(b)Yi = 0.

Here ∂i denotes the partial derivative by Xi. Since X is a hypersurface, any solution
of

n∑
i=0

CiYi = 0 (Y ∈ inverse image of tangent space)

must be of the form

(C0, · · · , Cn) = α((∂0P )(b), . . . , (∂nP )(b))

with a constant α
Now we write b = t(z), z ∈ D. The tangent space TzD = Cn−1 maps into the

space generated by the rows of
⎛
⎜⎜⎜⎝

t0(z) . . . tn(z)
∂1t0(z) . . . ∂1tn(z)

...
...

∂n−1t0(z) . . . ∂n−1tn(z)

⎞
⎟⎟⎟⎠ .
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We denote by Gi, 0 ≤ i ≤ n, the determinant of this matrix after cancellation of
the ith column. Then we obtain

det

⎛
⎜⎜⎜⎜⎜⎝

Y0 · · · Yn

t0(z) . . . tn(z)
∂1t0(z) . . . ∂1tn(z)

...
...

∂n−1t0(z) . . . ∂n−1tn(z)

⎞
⎟⎟⎟⎟⎟⎠

= 0

or
n∑

i=1

Gi(z)Yi = 0 (Y ∈ inverse image of tangent space).

So we get
Gi(z) = f(z)∂iP (t(z)) where f(z) ∈ C.

It is clear that f(z) is a holomorphic function on D and that it is non-zero along
the locus where the tangent map of D → PnC is injective.

We want to apply this to the Segre cubic S. Therefore we have to consider S as
a hypersurface in P4(C) (and not in P5(C) as in Theorem 3.1),

B3 −→ S ⊂ P 4C, z �−→ [T1(z), . . . , T5(z)].

The equation of S with respect to this embedding is

S := T 3
1 + · · ·+ T 3

5 − (T1 + · · ·+ T5)
3.

We consider now the 4× 5-matrix⎛
⎜⎜⎜⎝

T1(z) . . . T5(z)
∂1T1(z) . . . ∂1T5(z)

...
...

∂3T1(z) . . . ∂3T5(z)

⎞
⎟⎟⎟⎠ .

Now Gi, 1 ≤ i ≤ 5, is the determinant of this matrix after cancellation of the ith
column. The consideration above shows the following result.

Lemma 4.1. We have

Gi(z) = cχ2 ∂S

∂Ti
(c ∈ C).

Proof. We have shown above a formula Gi(z) = f(z)(∂S/∂Ti) with a holomorphic
function f whose zero locus is inside the ramification. It is easy to check that f
is a modular form. From Proposition 3.5 it follows that up to a constant factor
it is a power of χ. The exponent must be two as a weight consideration or the
ramification index, studied in [10], shows. �

5. The structure theorem

We now can determine the structure of the A-module M =
⊕

r∈Z
[Γ3[

√
−3, �r].

Recall A = A(Γ3[
√
−3]). The elements {Ti, Tj} can be considered as elements of

M(5). We consider the submodule

N =
∑
ij

A{Ti, Tj}.

It is sufficient to restrict to 1 ≤ i < j ≤ 5. Our goal is to understand the structures
of M and N . First we determine defining relations of N .
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Proposition 5.1. Defining relations for the module

N =
∑

1≤i,j≤5

A{Ti, Tj}

are

Tk{Ti, Tj} = Tj{Ti, Tk}+ Ti{Tk, Tj}, {Ti, Tj}+ {Tj , Ti} = 0,(1)

5∑
ν=1

(∂νS){Tν , Tμ} = 0.(2)

We recall that

S := T 3
1 + · · ·+ T 3

5 − (T1 + · · ·+ T5)
3

is the equation of the Segre cubic (considered as a hypersurface in P4(C)) and ∂νS
denotes its derivative by Tν .

Proof of Proposition 5.1. As in Section 1 we define a module

N ′ =
∑

1≤i,j≤5

A[Ti, Tj ]

with symbols [Ti, Tj ] that satisfy the relations described in the proposition. There is
a natural homomorphism N ′ → N and we have to show that this is an isomorphism.
By Proposition 1.4 it is sufficient that multiplication by the variables Ti and the
∂iS is injective. This can be done by means of a computer. �

In the following we will use the notation:

Sν := ∂νS.

In Lemma 4.1 we proved

det

⎛
⎜⎜⎜⎝

T1 . . . T4

∂1T1 . . . ∂1T4

...
...

∂3T1 . . . ∂3T4

⎞
⎟⎟⎟⎠ = cχ2S5.

We obtain

det

⎛
⎜⎜⎜⎝

T1 T1T2 . . . T1T4

∂1T1 T1∂1T2 . . . T1∂1T4

...
...

∂3T1 T1∂3T2 . . . T1∂3T4

⎞
⎟⎟⎟⎠ = cχ2S5T

3
1 .

If we multiply the first column by T2 and subtract it from the second one and so
on, we obtain the following lemma.

Lemma 5.2. We have

det({T1, T2}, {T1, T3}, {T1, T4}) = cχ2S5T
2
1 .

Since the determinant is different from 0, every element of M can be written in
the form

g1{T1, T2}+ g2{T1, T3}+ g3{T1, T4}
with meromorphic functions gi. It is easy to check that these are meromorphic
modular forms. In particular, they have trivial multipliers. From Lemma 5.2 we
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get that the product hi = giχ
2S5T

2
1 is holomorphic. The multipliers of χ are non-

trivial on the triflections. They are third roots of unity. Hence hi/χ is holomorphic
and, applying the same argument, hi/χ

2 is holomorphic. We have shown that

M ⊂ 1

T 2
1 S5

N .

During the proof we selected 1 and 5 from {1, . . . , 5}. Since we could have chosen
other indices we obtain the following proposition.

Proposition 5.3. We have

M =
⋂

1≤i 	=j≤5

1

T 2
i Sj

N .

Proof. Since the elements on the right hand side are holomorphic, they must belong
to M. �

We know generators and defining relations of N , thus the following lemma can
be proved by means of SINGULAR.

Lemma 5.4. For arbitray 1 ≤ i < j ≤ 5 one has

N =
1

Si
N ∩ 1

Sj
N and N =

1

T 2
i

N ∩ 1

T 2
j

N .

Putting together Proposition 5.3 and Lemma 5.4 we obtain our main result.

Theorem 5.5. The module M is generated by the brackets {Ti, Tj}. Its Hilbert
function is

−t14 + 10t5

(t3 − 1)4
= 10t5 + 40t8 + 100t11 + 199t14 + 346t17 + 550t20 + . . . .

Recall that the Ti have degree three and the {Ti, Tj} are counted with degree five.

6. The Igusa quartic

The method which we used works in several other cases [11, 12]. We have been
asked whether the method works also in the case of the Siegel modular group of
genus two and level two. This case has been treated in the paper [7]. It turns out
that the method works perfectly also in this case.

In the Siegel case the ring A has to be replaced by the ring of Siegel modular
forms of even weight and trivial character. It is generated by five forms T1, . . . , T5

of weight two with the defining relation

S = (T1T2 + T1T3 + T2T3 − T4T5)
2 − 4T1T2T3(T1 + T2 + T3 + T4 + T5).

This is the defining equation of the Igusa quartic which is the dual variety of the
Segre cubic. Hence one might expect similar results. In analogy to the ball case,
the A-module M =

⊕
r∈Z

M(r) can be defined, where M(r) now consists of the
modular forms of transformation type

f(MZ) = det(CZ +D)2+2r(CZ +D)f(Z)(CZ +D)′.
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The module M(4) contains the brackets {f, g} = g2(gdf − fdg) where f, g ∈ A(2)
are modular forms of weight two. As in the ball case we can consider the submodule
N ⊂ M that is generated by the {Ti, Tj}. The formula of Proposition 5.3

M =
⋂

1≤i 	=j≤5

1

T 2
i Sj

N

is correct also in the Siegel case. But now there is a big difference. Lemma 5.4
turns out to be false in the Siegel case. But it is not a problem to compute with the
help of SINGULAR the intersection that gives M. In this way we can reproduce
results of [7].

Theorem 6.1. The Hilbert function of M is

t8 − 4t6 + 15t4

t8 − 4t6 + 6t4 − 4t2 + 1
= 15t4 + 56t6 + 135t8 + 264t10 + 455t12 + · · · .

The Hilbert function of N is

−t14 − t12 − t10 + 5t8 + 10t4

t8 − 4t6 + 6t4 − 4t2 + 1
= 10t4 + 40t6 + 105t8 + 219t10 + 395t12 + · · · .
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