. We investigate the solvability of the Ambrosetti-Prodi problem for the p-Laplace operator $Delta_p$ with Venttsel' boundary conditions on a two-dimensional open bounded set with Koch-type boundary, and on an open bounded three-dimensional cylinder with Koch-type fractal boundary. Using a priori estimates, regularity theory and a sub-supersolution method, we obtain a necessary condition for the non-existence of solutions (in the weak sense), and the existence of at least one globally bounded weak solution. Moreover, under additional conditions, we apply the Leray-Schauder degree theory to obtain results about multiplicity of weak solutions.
A quasi-linear nonlocal Venttsel' problem of Ambrosetti–Prodi type on fractal domains / Rosaria Lancia, Maria; VELEZ SANTIAGO, Alejandro; Vernole, Paola. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - 39:8(2019), pp. 4487-4518. [10.3934/dcds.2019184]
A quasi-linear nonlocal Venttsel' problem of Ambrosetti–Prodi type on fractal domains
Rosaria Lancia, Maria;VELEZ SANTIAGO, Alejandro
;Vernole, Paola
2019
Abstract
. We investigate the solvability of the Ambrosetti-Prodi problem for the p-Laplace operator $Delta_p$ with Venttsel' boundary conditions on a two-dimensional open bounded set with Koch-type boundary, and on an open bounded three-dimensional cylinder with Koch-type fractal boundary. Using a priori estimates, regularity theory and a sub-supersolution method, we obtain a necessary condition for the non-existence of solutions (in the weak sense), and the existence of at least one globally bounded weak solution. Moreover, under additional conditions, we apply the Leray-Schauder degree theory to obtain results about multiplicity of weak solutions.File | Dimensione | Formato | |
---|---|---|---|
LanciaVerlezVernole_Ambrosetti-prodi.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
738.95 kB
Formato
Adobe PDF
|
738.95 kB | Adobe PDF | Contatta l'autore |
file(1).pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
664.33 kB
Formato
Adobe PDF
|
664.33 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.