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Abstract. We investigate the solvability of the Ambrosetti–Prodi problem

for the p-Laplace operator ∆p with Venttsel’ boundary conditions on a two-

dimensional open bounded set with Koch-type boundary, and on an open
bounded three-dimensional cylinder with Koch-type fractal boundary. Using a

priori estimates, regularity theory and a sub-supersolution method, we obtain

a necessary condition for the non-existence of solutions (in the weak sense), and
the existence of at least one globally bounded weak solution. Moreover, under

additional conditions, we apply the Leray-Schauder degree theory to obtain

results about multiplicity of weak solutions.

1. Introduction and the main result. Let Ω2 ⊆ R2 be a bounded domain with
a Koch-type fractal boundary Γ2 := ∂Ω2, and let Ω3 ⊆ R3 be a bounded cylinder
with a Koch-type fractal boundary ∂Ω3 := Ω3 \Ω3 = Γ3 ∪ (Ω2 ×{0})∪ (Ω2 ×{1}),
where Γ3 := Γ2×I, for I := [0, 1] (see section 2 for more details on the construction
of these sets). Given p ∈ (1,∞), denote by λN (·) the usual N -dimensional Lebesgue
measure in ΩN (N ∈ {2, 3}), and by µ(·) := Hd(·) the d-dimensional Hausdorff mea-
sure, for d the Hausdorff dimension of the fractal boundary Γi (i ∈ {2, 3}). In order
to pose our problem of interest, because the notion of the normal derivative (in the
classical sense) may not make sense for non-Lipschitz domains, we need to define
the notion of extended normal derivative (e.g. [49, Definition 4.1]).

2010 Mathematics Subject Classification. 35J62, 35J92, 35D30, 35B45, 35B65.
Key words and phrases. Venttsel’ boundary conditions, Koch snowflake domain, Weak solu-

tions, A priori estimates, Sub-supersolution method, Leray-Schauder degree theory.
∗ Corresponding author: A.Velez-Santiago.

1

http://dx.doi.org/10.3934/xx.xx.xx.xx


2 MARIA ROSARIA LANCIA, ALEJANDRO VÉLEZ - SANTIAGO, PAOLA VERNOLE

Definition 1.1. Let µ be a Borel measure supported on Γ := ∂Ω, and let u ∈
W 1,1
loc (Ω) be such that |∇u|p−2∇u ·∇v ∈ L1(Ω, dx) for all v ∈ C1(Ω). If there exists

a function f ∈ L1
loc(R

N , dx) such that∫
Ω

|∇u|p−2∇u∇v dx =

∫
Ω

fv dx+

∫
Γ

v dµ,

for all v ∈ C1(Ω), then we say that µ is the p-generalized normal derivative of
u, and we denote

|∇u|p−2 ∂u

∂νµ
:= µ.

Note that if Ω is “sufficiently regular”, for instance, a bounded Lipschitz domain,
taking µ the (N − 1)-dimensional Hausdorff measure HN−1, which in such case co-
incides with the classical surface measure on Γ, it follows that the above notion of
generalized normal derivative coincide with the classical definition of the normal
derivative.

We consider the solvability of the quasi-linear nonlocal elliptic problems of Ambrosetti-
Prodi type, formally given by

−∆pu+ Θ
Ω
u = f(x, u) + ξφ+ h in Ω2,

A2u+ |∇u|p−2 ∂u

∂νµ
+ ΘΓu = 0 on Γ2,

(1.1)

and 
−∆pu+ Θ

Ω
u = f(x, u) + ξφ+ h in Ω3,

A
3
u+ |∇u|p−2 ∂u

∂νµ
+ Θ

Γ
u = 0 on Γ3,

∂u

∂νλ2

= 0 on ∂Ω3 \ Γ3.

(1.2)

Given D ⊆ RN arbitrary, we consider

D :=

{
D2, if N = 2,
D3, if N = 3,

and µ :=

{
µ|Γ2

, if N = 2,
µ|

Γ3
, if N = 3,

(1.3)

In this paper, D will be either Ω, or Γ. Then, we assume that φ, h ∈ L∞(Ω) with
φ > 0 a.e. in Ω, f : Ω×R→ R is a Carathéodory function satisfying the conditions

lim inf
s→∞

f(x, s)

|s|p−2s
> 0 and lim sup

s→−∞

f(x, s)

|s|p−2s
< 0 (1.4)

(the limit being uniform in x ∈ Ω), and that ξ ∈ R is a parameter. Here we recall
that ∆pu := div(|∇u|p−2∇u) denotes the p-Laplace operator on Ω, ΘΓ : Bpα(Ω) →
Bpα(Ω)∗ and ΘΓ : Bpβ(Γ)→ Bpβ(Γ)∗ are given by

(Θ
Ω
u)v :=

∫
Ω

∫
Ω

(
|u(x)− u(y)|p−2 (u(x)− u(y))(v(x)− v(y))

|x− y|ςp+N

)
dxdy (1.5)

and

(Θ
Γ
u)v :=

∫
Γ

∫
Γ

(
|u(x)− u(y)|p−2 (u(x)− u(y))(v(x)− v(y))

|x− y|γp+d

)
dµxdµy , (1.6)
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respectively. Furthermore, the Venttsel’ maps A2 : D(E(p)) → D(E(p))∗ and A3 :
D(Γ3)→ D(Γ3)∗ are defined by

(A2u)v :=

∫
Γ2

dL(p)(u, v) := E(p)(u, v), (1.7)

and

(A
3
u)v :=

∫
I

[(A
2
u)v] ds+

∫
Γ2

∫
I

(|∂su|p−2∂su)∂sv dsdµ, (1.8)

for dL(p)(·, ·) the p-Lagrangian form on Γ2 (see section 3 for complete details about
the p-energy form).

When we consider the corresponding eigenvalue problem associated with the
Laplace operator ∆p, such eigenvalue problem is formulated by

−∆pv = λ|u|p−2u in Ω,

subject to the general dynamical boundary conditions described in the equations
(1.1) and (1.2). The above structure of the Then one has the first eigenvalue, given
by the zero eigenvalue λ1 = 0, from where we see that the condition (1.4) can be
regarded as a sort of of an eigenvalue crossing of f . Henceforth, one can find con-
stants M, η0 > 0 such that

f(x, s) ≥ η0|s|p−2s−M, if s > 0, (1.9)

and
f(x, s) ≥ −η0|s|p−2s−M, if s < 0. (1.10)

Moreover, we will assume in addition that there exist constants α0, γ0 > 0 such that

f(x, s) + α0|s|p−2s is non-decreasing in s on [−L,L], for every L > 0, (1.11)

and

f(x, s) ≤ γ0(1 + |s|q−1), for all s ∈ R, and uniformly for x ∈ Ω, (1.12)

where

1 < q <

{
Np
N−p , if 1 < p < N,

∞, if p ≥ N.
(1.13)

Next, we put:

Vp(Ω2) :=
{
u ∈W 1,p(Ω2) : u|

Γ2
∈ D(E(p))

}
(1.14)

and
Vp(Ω3) :=

{
u ∈W 1,p(Ω3) : u|Γ3

∈ D(Γ3)
}
. (1.15)

Then we define the function space:

Wp(Ω) :=

{
Vp(Ω2), if N = 2,

Vp(Ω3), if N = 3.
(1.16)

One has that Wp(Ω) is a Banach space with respect to the norm

‖u‖
Vp(Ω)

:=

(
‖u‖

W1,p(Ω)
+

∫
I

[E(p)(u, u)] ds+ σ
N

∫
Γ2

∫
I

|∂sv|p dsdµ
) 1
p

, (1.17)

for u ∈ Wp(Ω), where

σ
N

:=

{
0, if N = 2,
1, if N = 3.

(1.18)
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We next introduce the notion of weak solutions for our boundary value problems
(1.1) and (1.4).

Definition 1.2. (a) A function u ∈ Wp(Ω) a called a weak solution of either
problem (1.1) (N = 2), or problem (1.2) (N = 3), if

Λp(u, ϕ) =

∫
Ω

f(x, u)ϕdx+

∫
Ω

(ξφ+ h)ϕdx, ∀ϕ ∈ Wp(Ω), (1.19)

where

Λp(v, w) :=

∫
Ω

|∇v|p−2∇v∇w dx+

∫
I

[E(p)(v, w)] ds+

+ σ
N

∫
Γ2

∫
I

(|∂sv|p−2∂sv)∂sw dsdµ+ (Θ
Ω
v)w + (Θ

Γ
v)w, (1.20)

for v, w ∈ Wp(Ω), where σ
N

is defined as in (1.18).

(b) We call u ∈ Wp(Ω) a weak subsolution of problem (1.1) (N = 2), or
problem (1.2) (N = 3), if

Λp(u, ϕ) ≤
∫

Ω

f(x, u)ϕdx+

∫
Ω

(ξφ+ h)ϕdx, ∀ϕ ∈ Wp(Ω))+, (1.21)

where we recall that Wp(Ω)+ := {u ∈ Wp(Ω) | u ≥ 0}. Moreover, u ∈ Wp(Ω)
is a weak supersolution of problem (1.1) (N = 2), or problem (1.2)
(N = 3), if the reverse inequality in (1.21) holds.

We now make the main assumptions that will be crucial for the main results.

Assumption 1.3. Given N ∈ {2, 3}, p ∈ (1,∞), d ∈ (N − p,N) ∩ (0, N), let

Ω ⊆ RN be given in accordance with (1.3) (for D = Ω), assume that f : Ω×R→ R
be a Carathéodory function satisfying the conditions (1.4), (1.11), and (1.12), let
φ, h ∈ L∞(Ω) with φ > 0 a.e. in Ω, and let ξ ∈ R be a parameter.

We recall that if p ≥ N , by the Sobolev embedding theorem, all the discussions
and estimates of the paper become much easier, with many simplifications (see sec-
tion 2). Therefore, when deriving a priori estimates, we will concentrate on the
critical case, namely, when p < N .

Now we state the first main result of this paper, namely, an existence and non-
existence result.

Theorem 1.4. Suppose that all the conditions of Assumption 1.3 are fulfilled. Then
there exist parameters ξ0, ξ

′
0 ∈ R such that

(1) problems (1.1) and (1.2) are not solvable (over Wp(Ω)) for all ξ > ξ0;

(2) if ξ ≤ ξ′0, then problems (1.1) and (1.2) are both solvable (over Wp(Ω)).
Furthermore, the weak solutions of the equations (1.1) and (1.2) are globally
bounded over Ω.



VENTTSEL’ PROBLEM OF AMBROSETTI–PRODI TYPE ON FRACTAL DOMAINS 5

In the preceding theorem, if p ∈ (1, N ], it is unknown (up to the present time)
whether weak solutions of either problem (1.1), or problem (1.4), are globally contin-
uous over Ω. Consequently, because of the general structure of the elliptic equations
(1.1) and (1.4), we have not been able to deduce further results, such as multiplicity
results, for the case p ∈ (1, N ]. However, when p > N , then one can refine more
the above result, as we see in our second main result of the paper.

Theorem 1.5. Assume (in addition to the conditions in Theorem 1.4) that p > N ,
Then there exists a parameter ξ0 ∈ R, such that

(1) problems (1.1) and (1.2) are not solvable (over Wp(Ω)) for all ξ > ξ0;

(2) for each ξ ≤ ξ0, problems (1.1) and (1.2) admit respective minimal solution
(in the weak sense), which are Hölder continuous over Ω.

Moreover, when f is locally Hölder continuous in R, and uniformly a.e. on Ω, one
gets that

(3) there exists ξ1 ≤ ξ0 such that each of the problems (1.1) and (1.2) have at
least two distinct solutions, whenever ξ < ξ1.

(4) If in addition f ∈ C(Ω× R), then ξ1 = ξ0.

The literature related to Ambrosetti–Prodi-type problems is extensive, and has
mostly concentrated in the Dirichlet problem. The motivation of this problem comes
from the pioneering paper by Ambrosetti and Prodi [3]. The results in [3] opened
the door to many generalizations, and further investigation of problems of this type,
but in different frameworks ( structures and boundary conditions). In particular,
the Ambrosetti–Prodi problem for the p-Laplace operator and Dirichlet boundary
conditions has been considered in [2, 4, 5, 25, 37, 39, 40], among many others. It
is important to mention that for the Dirichlet problem, the regularity theory is
not addressed,since the domain is assumed to be smooth (and thus the regularity
results are standard and known). Complications related to the Dirichlet problem
of Ambrosetti–Prodi-type arise when proving the non-existence of solutions, mainly
because in this case, the constant functions are not in the corresponding function
space W 1,p

0 (Ω) where the Dirichlet problem is posed, and also because the first
eigenvalue for the Dirichlet problem is strictly positive. To obtain non-existence
results for the Dirichlet problem, some key estimates, such as the positivity of the
first eigenvalue and Picone’s identity, are required. The smoothness of the domain
and the regularity of the solution play a crucial role in the application of such iden-
tity.

The Ambrosetti–Prodi problem for other boundary conditions is less known. On
smooth domains, the Ambrosetti–Prodi problem with (local) Neumann boundary
conditions has been addressed in [19, 20, 44, 46], and recently a generalization of the
(local) Neumann problem of Ambrosetti–Prodi type to a large class of non-smooth
domains has been considered in [47]. Furthermore, a nonlocal version of the Neu-
mann problem was investigated in [48], where the domain was assumed to be a
bounded Lipschitz domain, and in the same paper, the author introduced for the
first time the Venttsel’ problem (also denoted by Wentzell problem) of Ambrosetti–
Prodi type (on bounded Lipschitz domains). To our knowledge, there is no literature
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concerning the Venttsel’ problem of Ambrosetti–Prodi-type, other than the results
in [48], where the Venttsel’ operator is given by the p-Laplace-Beltrami operator
over Γ It is important to point out that in this case, unlike the case of the Dirichlet
problem, non-existence results are easier to be established, but on the other hand,
other results and a priori estimates become much harder to be handled.

In the present paper, we turn our attention to the solvability of the nonlocal
Ambrosetti–Prodi type problem with Venttsel’ boundary conditions, on the domain
Ω with fractal-like boundary Γ, given as in (1.3). Such boundary value problem has
never been investigated before, and to our knowledge, there is no literature regard-
ing the nonlocal Venttsel’ problem Ambrosetti–Prodi-type on fractal domains. In
fact, the only known results for (local) Ambrosetti–Prodi problems on fractal do-
mains appears in [47] for the Neumann problem. Furthermore, when Ω = Ω3 ⊆ R3,
problem (1.2) is a mixed nonlocal Venttsel’ - Neumann boundary value problem.
To our knowledge, there are no results in the literature concerning Ambrosetti–
Prodi problems with mixed boundary conditions. We also point out that problems
(1.1) and (1.2), have a nonlocal term both in the interior of the domain and on the
boundary.

We point out that in order to consider Venttsel’ boundary conditions we introduce
a suitable ”surrogate” of the p-Laplacian on the boundary Γ of Ω. This operator
has been introduced in the case p = 2 in [30, 29, 28], and recently generalized to the
quasi-linear case in [16, 27] (for the case when Ω = Ω2 ⊆ R2). Fractal boundaries
and fractal layers are of great interest for those applications in which the surface
effects are enhanced with respect to the surrounding volume (see [13, 14, 15] for
details and motivations). Therefore, the interpretation of the equations (1.1) and
(1.2) in a suitable sense represents substantial results for the theory of quasi-linear
boundary value problems, as well as for the analysis on fractal domains.

We outline the plan of the paper. In section 2 we provide a brief construction
of the domains under consideration, fix the notations, definitions, and state some
intermediate well-know results that will be applied in the subsequent sections. In
section 3, we define the p-energy functional related to the Ventssel’-type operator on
Ω2 and Ω3. Section 4 concerns the regularity theory for weak solutions to problems
(1.1) and (1.2). Under the general conditions outlined in Assumption 1.3, assuming
that the boundary value problems (1.1) and (1.2) are solvable, we perform a priori
estimates for weak solutions to both problems, as well as a priori estimates for the
difference of weak solutions. As a consequence, we show that weak solutions of both
problems (1.1) and (1.2) are globally bounded. For bounded Lipschitz domains and
for the particular case q = p (in (1.12)), these a priori estimates have been obtained
in [48], and the same results for optimal growth condition (1.12) have been estab-
lished for the (local) Neumann problem in [47]. Our approach will be inspired by
the ones employed in [48, 47] but since we are dealing with more general conditions
and assumptions, there are also substantial differences and generalizations in the
present problem. Such variants will be addressed in detail. In section 5, we estab-
lish an alternative version of a sub-supersolution method for the boundary value
problems (1.1) and (1.2), which will be a key tool for the establishment of the main
results of the paper. To conclude, in section 6 we prove the main results of the
paper, namely, Theorem 1.4 and Theorem 1.5.
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Figure 1. Pre-fractal Koch snowflake

2. Preliminaries and intermediate results. In this section we present some
important (well-known) definitions, fix the notations that will be carried out in the
subsequent sections, and state some known results that will be used in the later
sections. All the arguments will be given under the conditions of Assumption 1.3.

2.1. Geometry. We denote by |P − P0| the Euclidean distance in Rn and by
B(P0, r) = {P ∈ Rn : |P − P0| < r}, P0 ∈ Rn, r > 0, the euclidean ball.
By the Koch snowflake Γ2, we denote the union of three com-planar Koch curves
K1, K2 and K3. We assume that the junction points A1, A3 and A5 are the vertices
of a regular triangle with unit side length, i.e. |A1−A3| = |A1−A5| = |A3−A5| = 1.

K1 is the uniquely determined self-similar set with respect to a family Ψ1 of four

suitable contractions ψ
(1)
1 , ..., ψ

(1)
4 , with respect to the same ratio 1

3 . Let V
(1)
0 :=

{A1, A3}, ψi1...ih := ψi1 ◦ · · · ◦ ψih , V
(1)
i1...ih

:= ψ
(1)
i1...ih

(V
(1)
0 ) and

V
(1)
h :=

4⋃
i1...ih=1

V
(1)
i1...ih

.

We set i|h = (i1, i2, . . . , ih), V
(1)
? := ∪h≥0V

(1)
h . It holds that K1 = V

(1)
? . Now let

K0 denote the unit segment whose endpoints are A1 and A3. We set Ki1...ih =
ψi1...ih(K0) and V (Ki1...ih) = Vi1...ih . In a similar way, it is possible to approximate

K2,K3 by the sequences (V
(2)
h )h≥0, (V

(3)
h )h≥0, and denote their limits by V

(2)
? , V

(3)
? .

In order to approximate Γ2, we define the increasing sequence of finite sets of

points Vh := ∪3
i=1V

(i)
h , h ≥ 1 and V? := ∪h≥1Vh. It holds that V? = ∪3

i=1V
(i)
? and

Γ2 = V?.
The Hausdorff dimension of the Koch snowflake is given by d2 = log(4)

log(3) .

One can define, in a natural way, a finite Borel measure µ|
Γ2

supported on Γ2 by

µ|
Γ2

:= µ1 + µ2 + µ3, (2.1)

where µi denotes the normalized d2-dimensional Hausdorff measure, restricted to
Ki, i = 1, 2, 3.
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Further, for any n ≥ 1, we define a discrete measure on V
(i)
n by:

µin :=
1

4n

∑
p∈V (i)

n

δ{p}, (2.2)

where δ{p} denotes the Dirac measure at the point p. We have the following result:

Proposition 2.1. (see [31]) The sequence (µin)n≥1 is weakly convergent (i.e. in
C(Ki)

′) to the measure µi.

The measure µ|Γ2
is a d2-measure (see [24]), that is, there exist two positive

constants c1, c2, such that

c1r
d2 ≤ µ

Γ2
(B(P, r) ∩ Γ2) ≤ c2rd2 , ∀P ∈ Γ2

where d2 = log(4)
log(3) .

In the following we denote by

Fh+1 =

3⋃
i=1

K
(h+1)
i (2.3)

the closed polygonal curve approximating Γ2 at the (h + 1)-th step. We define
Sh = Fh× I, where I = [0, 1]. By Ωh ⊂ R2 we denote the open bounded set having
as boundary Fh. We denote by Qh the three-dimensional cylindrical domain having
Sh as “lateral surface” and the sets Ωh × {0} and Ωh × {1} as bases.

In an analogous way, we define the cylindrical-type surface Γ3 = Γ2 × I and
we denote by Ω2 the open bounded two-dimensional domain with boundary Γ2.
Also, by Ω3 we denote the open cylindrical domain having Γ3 as lateral surface,
and the sets Ω2 × {0} and Ω2 × {1} as bases. We denote the points of Γ3 and Sh
by the couple P = (x, y), where x = (x1, x2) are the coordinates of the orthogonal
projection of P on the plain containing Γ2 and Fh respectively (for Γ3 and Sh) and
s is the coordinate of the orthogonal projection of P on the interval (0, 1), that is
(x1, x2) ∈ Γ2 (or (x1, x2) ∈ Fh for the pre-fractal case) and s ∈ I.

We introduce on Γ3 the measure

dµ|
Γ3

= dµ|
Γ2
× ds, (2.4)

where ds is the one-dimensional Lebesgue measure on I. It follows that the measure

µ|
Γ3

is also a d3-measure for d3 := 1 + log(4)
log(3) . Then we set

d :=

{
d2, if N = 2,
d3, if N = 3,

(2.5)

and µ is considered as in 1.3.

2.2. Functional spaces. By W 1,p(Ω) we mean the well-known Lp-based Sobolev
space. Also, given E ⊆ Rm a d-set in the sense of [24], and given β ∈ (0, 1), d ∈
(0, N ], we define the Besov space Bpβ(E, η) as the set of functions u ∈ Lp(E, dη) for
which the semi-norm

N p
β (u,E, η) :=

(∫
E

∫
E

[
|u(x)− u(y)|
|x− y|β+ d

p

]p
dηxdηy

) 1
p

(2.6)
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Figure 2. Surface S3

is finite. Additionally, for r, s ∈ [1,∞), or r = s = ∞, we will often refer at times
to the Banach Space defined in [50], i.e.,

Xr,s(Ω,Γ) := {(f, g) : f ∈ Lr(Ω), g ∈ Ls(Γ)} ,

endowed with norm

|‖(f, g)‖|r,s := ‖(f, g)‖Xr,s(Ω,Γ)
:= ‖f‖r,Ω + ‖g‖s,Γ , if r, s ∈ [1,∞),

and

|‖(f, g)‖|∞ := ‖(f, g)‖X∞,∞(Ω,Γ)
:= max

{
‖f‖∞,Ω , ‖g‖∞,Γ

}
.

We stress that when r = s, we will write Xr(Ω,Γ) := Xr,s(Ω,Γ) and |‖(f, g)‖|
r

:=
|‖(f, g)‖|

r,s
, respectively. For more information and properties regarding the Sobolev

spaces under the definitions above, refer to [7, 9, 24, 38, 43] (among others). For
completeness, we quote the following properties (e.g. [7, 18, 23, 32, 24, 51, 52, 53]).

• W 1,p(Ω) ↪→ L
pN
N−p

(Ω), and hence there exists a constant c1 > 0, such that

‖u‖
pN
N−p ,Ω

≤ c1‖u‖W1,p(Ω)
, ∀u ∈W 1,p(Ω). (2.7)

Moreover, if 1 < r < pN
N−p , then the embedding W 1,p(Ω) ↪→ Lr(Ω) is compact.

• There exists a linear continuous operator from W 1,p(Ω) into L
pd
N−p

(Γ), and thus
there exists a constant c2 > 0, such that

‖u‖
pd
N−p ,Γ

≤ c2‖u‖W1,p(Ω)
, ∀u ∈W 1,p(Ω). (2.8)

Moreover, if 1 < s < pd
N−p , then the operator from W 1,p(Ω) into Ls(Γ) is compact.

• If p = N , then W 1,p(Ω) ↪→ Lq(Ω) and the trace of W 1,p(Ω) lies in Lr(Γ)
continuously, for all q, r ∈ [1,∞), while in the case p > N , we have that W 1,p(Ω) ↪→
C0,α(Ω) for some δ ∈ (0, 1).

• There exists a constant c3 > 0 such that

‖u‖
W1,p(Ω)

≤ c3‖∇u‖p,Ω , (2.9)
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for every u ∈ W 1,p(Ω) such that
∫
E
u dx = 0 for a measurable set E ⊆ Ω with

λN (E) > 0.

• If p ∈ (1, N) and s ∈ (0, 1), then there exists a linear continuous mapping from
W 1,p(Ω) into Bps(Ω) and a constant c4 > 0 such that

‖u‖
Bps (Ω)

≤ c4‖u‖W1,p(Ω)
, for all u ∈W 1,p(Ω). (2.10)

• If p ∈ (1, N), then there exists a linear continuous mapping from W 1,p(Ω) into
Bp

1−N−d
p

(Γ, µ) and a constant c5 > 0 such that

‖u‖
Bp
1−N−d

p

(Γ,µ)
≤ c5‖u‖W1,p(Ω)

, for all u ∈W 1,p(Ω). (2.11)

We complete this section by collecting some well-known analytical results that
will be applied throughout the subsequent section.

Lemma 2.2. (see [41]) Let ϕ = ϕ(t) be a nonnegative, non-increasing function
on a half line {t ≥ k0 ≥ 0}, such that there exist c, α > 0, and there exists δ > 1
with

ϕ(h) ≤ c (h− k)−αϕ(k)δ,

for h > k ≥ k0. Then
ϕ(k0 + ς) = 0,

where
ςα = c ϕ(k0)δ−12αδ(δ−1).

Lemma 2.3. (see [26]) Let u be an integrable function over a bounded open set D,
such that for arbitrary k ≥ k0 > 0,∫

D

(u− k)χ{u>k} dx ≤ γkαλN ({x ∈ D | u(x) > k})1+ε,

where γ, α, ε are constants such that ε > 0 and 0 ≤ α ≤ 1 + ε. Then there exists a
constant C, depending on γ, α, ε, k0, and

∥∥uχ{u>k}∥∥
1,D

, such that ‖u‖∞,D ≤ C.

Proposition 2.4. (see [6]) Let a, b ∈ RN and r ∈ (1,∞). Then there exists a
constant cr > 0 such that(

|a|r−2a− |b|r−2b
)

(a− b) ≥ cr (|a|+ |b|)r−2 |a− b|2 ≥ 0. (2.12)

If in addition r ∈ [2,∞), then there exists a constant c∗r ∈ (0, 1] such that(
|a|r−2a− |b|r−2b

)
(a− b) ≥ c∗r |a− b|r, (2.13)

and also in this case there is a constant c′r ∈ (0, 1] such that

sgn(a− b)
(
|a|r−2a− |b|r−2b

)
≥ c′r |a− b|r−1. (2.14)

Finally, if r ∈ (1, 2] and ε > 0, then for each a, b ∈ RN with |a−b| ≥ εmin{|a|, |b|},
we find a constant cr,ε > 0 such that〈

|a|r−2a− |b|r−2b, a− b
〉
≥ cr,ε |a− b|r, (2.15)

and
sgn(a− b)

(
|a|r−2a− |b|r−2b

)
≥ cr,ε |a− b|r−1. (2.16)
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Proposition 2.5. (see [6]) Let ξ, ς, c, τ, % ∈ [0,∞) and r ∈ [1,∞), and assume
that the parameter ξ ≤ τε−%ς + εrc for all ε > 0. Then one has

ξ ≤ (τ + 1)

[
ς

r
r+%

c
%
r+%

+ ς

]
. (2.17)

3. The p-forms on Koch-type domains. In [11] the p-energy forms on the Koch
curve have been constructed.
For f : V

(i)
? → R, we define for 1 < p <∞

E(p)
n,i [f ] =

1

p
4(p−1)n

4∑
i1,...,in=1

∑
ξ,η∈V (i)

0

|f(ψi1...in(ξ))− f(ψi1...in(η))|p, (3.1)

it has been shown that the sequence E(p)
n [f ] is non-decreasing, and by defining for

f : V
(i)
? → R

E(p)
i [f ] = lim

n→∞
E(p)
n,i [f ], (3.2)

the set

F (p)
?,i = {f : V

(i)
? → R : E(p)[f ] <∞} (3.3)

does not degenerate to a space containing only constant functions. Each f ∈ F (p)
?,i

can be uniquely extended in C(Ki). We denote this extension on Ki still by f and
we define the space

D(E(p)
i ) = {f ∈ C(Ki) : E(p)[f ] <∞}, (3.4)

where E(p)
i [f ] := E(p)

i [f |V ? ]. Hence D(E(p)
i ) ⊂ C(Ki) ⊂ Lp(Ki, µ). Moreover,

(E(p)
i , D(E(p)

i ) is a non-negative energy functional in Lp(Ki, µi) and the following
result holds.

Theorem 3.1. (see [11]) The following properties hold.

(i) D(E(p)
i ) is complete in the norm ‖f‖

D(E(p)
i )

:= ‖f‖Lp(Ki,µi) + (E(p)
i [f ])1/p.

(ii) D(E(p)
i ) is dense in Lp(Ki, µi).

(iii) D(E(q)
i ) ⊂ D(E(p)

i ), for 1 < p ≤ q <∞.

3.1. p-Lagrangians on the Koch curve and on the Koch snowflake. In this
subsection, we recall the main properties of the p-Lagrangian on the Koch curve.
For the concept of Lagrangians on fractals, i.e. the notion of a measure valued local
energy, we refer to [22] and [42].

We also have the following:

Proposition 3.2. (see [10]) Let A be any subset of Ki. For every u ∈ D
(
E(p)
i

)
,

the sequence of measures given by

L̃(p)
n,i(u)(A) :=

4(p−1)n

p

4∑
i1,...,in=1

∑
ξ,η∈V (i)

0

ψi1...in (ξ),ψi1...in (η)∈A

|u(ψi1...in(ξ))− u(ψi1...in(η))|p.

(3.5)
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converges to a positive semidefinite additive Borel measure

L̃(p)
i (u)(A) := lim

n→∞
L̃(p)
n,i(u)(A) (3.6)

the so-called p-Lagrangian measure on Ki. Moreover it holds that for every p > 1,

• L̃(p)
i is positive semidefinite and convex

• L̃(p)
i is homogeneous of degree p

• L̃(p)
i is such that ‖u‖ = (

∫
Ki
|u|pdµ+

∫
Ki
dL̃(p)

i (u))1/p is a norm in D
(
E(p)
i

)
• for every u, v ∈ D

(
E(p)
i

)
there exists in the weak ∗ topology of M (the set of

Radon measures) the following limit

lim
t→0

L̃(p)
i (u+ tv)− L̃(p)

i (u)

t
=
〈
∂L̃(p)

i (u), v
〉

Moreover, it holds that

E(p)
i (u, v) =

∫
Ki

dL(p)
i (u, v), u, v ∈ D

(
E(p)
i

)
. (3.7)

where we set L(p)
i (u, v) : D

(
E(p)
i

)
×D

(
E(p)
i

)
→M, with

L(p)
i (u, v) =

〈
∂L̃(p)

i (u), v
〉
. (3.8)

We note that by straightforward calculations it holds that:〈
L̃(p)
n,i(u), v

〉
=

4(p−1)n

p

4∑
i1,...,in=1

∑
ξ,η∈V (i)

0

|u(ψi1...in(ξ))− u(ψi1...in(η))|p−2

(u(ψi1...in(ξ))− u(ψi1...in(η)))(v(ψi1...in(ξ))− v(ψi1...in(η))),

so proceeding as in [10] we have

lim
n→∞

〈
L̃(p)
n,i(u), v

〉
=
〈
L̃(p)
i (u), v

〉
. (3.9)

Finally by proceeding as in [21, Section 4.1-4.2] one can define on Γ2 a p-
Lagrangian (L(p), D(E(p))) and a p-energy form (E(p), D(E(p))). More precisely
E(p)(u, v) =

∫
Γ2
dL(p)(u, v), for every u, v ∈ D(E(p)) where D(E(p)) = {u ∈ C(Γ2) :

u|Ki ∈ D(E(p)
i )}, for i = 1, 2, 3. In particular it holds ( see [21, Thoerem 4.6]) that

E(p)[u] =

3∑
i=1

E(p)
i [u|Ki ] (3.10)

We recall that from [12, Theorem 4.1], it follows thatD(E(p)) can be characterized
in terms of Lipschitz spaces with equivalent norms:

D(E(p)) = Lip
df ,df

(p,∞,Γ2),

D(E(p)) ⊂ Bp
α

(Γ2, µ|Γ2
), for every α < d. (3.11)

We now define the energy form on Γ3:

E
Γ3

[u] =
1

p

∫
I

E(p)[u]ds +
1

p

∫
Γ2

∫
I

|∂su|pdsdµ|Γ3
(3.12)

with domain D(Γ3) defined as



VENTTSEL’ PROBLEM OF AMBROSETTI–PRODI TYPE ON FRACTAL DOMAINS 13

D(Γ3) = C(Γ3) ∩ Lp([0, 1];D(E(p))) ∩W 1,p([0, 1];Lp(Γ2))

‖·‖D(Γ3)

, (3.13)

where ‖ · ‖D(Γ3)
is the intrinsic norm

‖u‖D(Γ3)
=
(
EΓ3

[u] + ‖u‖p
p,Γ3

) 1
p

. (3.14)

We now give an embedding result for the domain D(Γ3). Unlike the two dimen-
sional case where there is a characterization of the functions in D(E(p)) in terms of
the so-called Lipschitz space, for D(Γ3) we do not have such characterization, but
the following result holds.

Proposition 3.3. (see [17]) D(S) ↪→ Bp
β̄
(Γ3, µ|Γ3

) for any 0 < β̄ < 1.

From the above results it follows in particular that the spaces Vp(Ω̄2) and Vp(Ω̄3)
are non trivial. Finally, we recall that for the remaining of the paper, we will
consider the sets Ω, Γ, and the measure µ on Γ, in accordance with (1.3).

4. Global regularity for weak solutions. The following section is devoted to
establish global regularity results for weak solutions of both Eq. (1.1) and (1.2),
under the conditions of Assumption 1.3.

Given u ∈ Wp(Ω) and k ≥ 0 a fixed real number, we put

uk := (u− k)+, u−k := (u− − k)+, and ûk := (|u| − k)+sgn(u). (4.1)

Clearly uk, u
−
k , ûk ∈ Wp(Ω). Set

Ak := {x ∈ Ω | |u| > k}, A+
k := {x ∈ Ω | u > k}, A−k := {x ∈ Ω | u− > k}.

(4.2)
Then, for each D ⊆ RN such that D ∩ Ω 6= ∅, taking into account (4.1) and (4.2),
we write

Dk := D ∩Ak, D±k := D ∩A±k . (4.3)

We stress that throughout the remaining of the paper, the measurable set D will
be either the interior Ω, or the boundary Γ := ∂Ω. Finally, we put

p
N

:=
Np

N − p
and p

d
:=

pd

N − p
. (4.4)

Next, in view of the above notations, we now derive L∞-type estimates for weak
solutions of both Eq. (1.1) and Eq. (1.2), and a priori estimates for the difference
of weak solutions of problem (1.1), and problem (1.2).

Proposition 4.1. Let u ∈ Wp(Ω). Then it holds that E(p)(u, u−k ) ≤ 0 and ES(u, u−k ) ≤
0.

Proof. Since

E(p)(w, v) :=

∫
Γ2

dL̃(p)(w, v) =
〈
∂L(p)(w), v

〉
= lim
n→∞

〈
∂L̃(p)

n (w), v
〉
, (4.5)

for w, v ∈ D(E(p)), where
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〈
∂L̃(p)

n (w), v
〉

:= 1
p

4∑
κi=1

∑
ξ,ς∈V (i)

0 ξ 6=ς

|w(ψκi(ξ))− w(ψκi(ς))|p−2

|ψκi(ξ)− ψκi(ς)|dp

× (w(ψκi(ξ))− w(ψκi(ς))) (v(ψκi(ξ))− v(ψκi(ς))) µn, (4.6)

for κi := i1, . . . , in. Then, one sees easily that
〈
∂L̃(p)

n (u), u−k

〉
≤ 0 for each n ∈ N,

and thus passing to thee limit, we deduce that E(p)(u, u−k ) ≤ 0. From the results
for the two dimensional case and the monotonicity of the integral it follows that
E

Γ3
(u, u−k ) ≤ 0.

For u, v ∈ Wp(Ω), we define

K(p)(u, v) :=

∫
I

[E(p)(u, v)] dt+ σ
N

∫
Γ2

∫
I

|∂tu|p−2uv dtdµ, (4.7)

for σ
N

defined as in (1.18). Then, (1.20) becomes

Λp(u, v) :=

∫
Ω

|∇v|p−2∇u∇v dx+K(p)(u, v) + (Θ
Ω
u)v + (Θ

Γ
u)v

Then we have the following key result.

Theorem 4.2. Suppose that ξ belongs to a bounded interval. If u ∈ Wp(Ω) is a
weak solution of either (1.1), or (1.2), then there exists a constant Cξ ≥ 0 large
enough (and independent of u) such that ‖u‖∞,Ω ≤ Cξ.

Proof. We will prove both cases at the same time. Indeed, let u ∈ Wp(Ω) be a weak
solution of either (1.1), or (1.2). We will show that the L∞-norm of both u− and
u+ are bounded by Cξ.
• First we show that ‖u−‖∞,Ω ≤ Cξ for Cξ large enough. Indeed, given k > 0 a

real number, let u−k ∈ Wp(Ω) be the function defined in (4.1). It is easy to see that

(Θ
Ω
u)u−k ≤ 0 and (Θ

Γ
u)u−k ≤ 0 (recall that Θ

Ω
and Θ

Γ
are defined as in (1.5) and

(1.6), respectively). From Proposition 4.1 and the definition of K(p)(·, ·) in (4.7),
it follows that K(p)(u, u−k ) ≤ 0. By testing (1.19) with u−k and applying (1.10), we
obtain

‖∇u−k ‖p
p,Ω
−
k

≤ −Λp(u, u
−
k ) = −

∫
Ω−k

f(x, u)u−k dx−
∫

Ω−k

(ξφ+ h)u−k dx

≤ η0

∫
Ω−k

(u−−k)p dx+
(
η0k

p−1 +M + |ξ|‖φ‖∞,Ω + ‖h‖∞,Ω
) ∫

Ω−k

(u−−k) dx.

Now, by Hölder’s inequality together with (2.7), one sees that∫
Ω−k

(u− − k)p dx ≤ λN (Ω−k )
p
N c1

(
‖∇u−k ‖

p

p,Ω
−
k

+

∫
Ω−k

(u− − k)p dx

)
. (4.8)

Hence, combining (4.8) with the first estimate, and rearranging, yields that(
λN (Ω−k )

− p
N − c1(1 + η0)

)∫
Ω−k

(u− − k)p dx
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≤ c1
(
η0k

p−1 +M + |ξ|‖φ‖∞,Ω + ‖h‖∞,Ω
) ∫

Ω−k

(u− − k) dx. (4.9)

We note that given u ∈ Wp(Ω) a weak solution of either (1.1), or (1.2) we can test
(1.19) with the function w ≡ 1. Then, we have (ΘΩu)1 = (ΘΓu)1 = 0, and also in
view of (4.5) and (4.6), we deduce that E(p)(u, 1) = 0. Hence, applying (1.9) and
(1.10), we are lead to the following:

0 =

∫
Ω

(f(x, u) + ξφ+ h) dx ≥ η0

∫
Ω

|u|p−1 dx− (|ξ|‖φ‖∞,Ω + ‖h‖∞,Ω +M)λN (Ω),

which implies that∫
Ω

|u|p−1 dx ≤
|ξ|‖φ‖∞,Ω + ‖h‖∞,Ω +M

η0
λN (Ω) := C

Ω
. (4.10)

On the other hand, since∫
Ω

|u|p−1 dx ≥
∫

Ω−k

(u−)p−1 dx ≥ kp−1λN (Ω−k ),

taking into account (4.10) we get

λN (Ω−k ) ≤ 1

kp−1

∫
Ω

|u|p−1 dx ≤ C
Ω

kp−1
. (4.11)

Therefore, (4.11) implies that lim
k→∞

λN (Ω−k ) = 0, and thus we can find a constant

k0 > 0 sufficiently large (and independent of u), such that

λN (Ω−k )
− p
N − c1(1 + η0) ≥

λN (Ω−k )
− p
N

2
, for all k ≥ k0. (4.12)

By Hölder’s inequality and (4.9) one has

∫
Ω−k

(u−−k) dx ≤ λN (Ω−k )
1
p′

(
c1(η0k

p−1 +M + |ξ|‖φ‖∞,Ω + ‖h‖∞,Ω)

λN (Ω−k )
− p
N − c1(1 + η0)

∫
Ω−k

(u− − k) dx

)1/p

,

and thus combining this inequality with (4.12) we have

∫
Ω−k

(u− − k) dx ≤ λN (Ω−k )
1+

p′
N

(
c1(η0k

p−1 +M + |ξ|‖φ‖∞,Ω + ‖h‖∞,Ω)

1− c1(1 + η0)λN (Ω−k )
− p
N

)1/(p−1)

≤ λN (Ω−k )
1+

p′
N k

[
c1
2

(
η0 +

M + |ξ|‖φ‖∞,Ω + ‖h‖∞,Ω
kp−1

)]1/(p−1)

≤ λN (Ω−k )
1+

p′
N k

[
c1
2

(
η0 +

M + |ξ|‖φ‖∞,Ω + ‖h‖∞,Ω
kp−1

0

)]1/(p−1)

. (4.13)

From this last calculation together with Lemma 2.3 we obtain that ‖u−‖∞,Ω is
bounded by a constant depending on p, N, η0, M, ξ, ‖φ‖∞,Ω , ‖h‖∞,Ω , and ‖u−‖

1,Ω
−
k

.

Furthermore, examining the proof of Lemma 2.12 (see [26, proof of Lemma 5.1]),
it remains to find an upper bound for ‖u−‖

1,Ω
−
k

, independent of k and u. To
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achieve this, test (1.19) with v = −u−. Then we see that in this case (ΘΩu)v ≥ 0,
(Θ

Γ
u)v ≥ 0, and K(p)(u, v) ≥ 0. Hence, recalling (1.10), and applying Young’s

inequality, we deduce that for all ε > 0,

0 ≤ ‖∇u−‖p
p,Ω

+ E(p)(u−, u−) ≤ Λp(u, v) = −
∫

Ω−k

(f(x, u) + ξφ+ h)u− dx

≤ −η0

∫
Ω

(u−)p dx+ (M + |ξ|‖φ‖∞,Ω + ‖h‖∞,Ω)

∫
Ω−k

u− dx

≤ −η0

∫
Ω

(u−)p dx+
(M + |ξ|‖φ‖∞,Ω + ‖h‖∞,Ω)p

′
λN (Ω)

ε1/(p−1)
+ε

∫
Ω

(u−)p dx.

Letting ε = η0/2 > 0 and rearranging, one sees that

∫
Ω

(u−)p dx ≤
(

2(M + |ξ|‖φ‖∞,Ω + ‖h‖∞,Ω)

η0

)p′
λN (Ω), (4.14)

and thus (4.14) gives

‖u−‖
1,Ω
−
k

≤ λN (Ω)
1
p′
(∫

Ω

(u−)p dx

)1/p

≤
(

2(M + |ξ|‖φ‖∞,Ω + ‖h‖∞,Ω)

η0

) 1
p−1

λN (Ω),

(4.15)

proving the desired conclusion.
• Next, we show that ‖u+‖∞,Ω ≤ Cξ. Given k > 0 a real number, let u+

k ∈W 1,p(Ω)
be the function defined in (4.1). Proceeding as in [50, proof of Theorem 5.7]
and recalling (4.5) and (4.6), we see that (Θ

Ω
u)u+

k ≥ 0, (Θ
Γ
u)u+

k ≥ 0, and

K(p)(u, u+
k ) ≥ 0. Furthermore, as in the previous case, one can easily deduce that

lim
k→∞

λN (Ω+
k ) = 0. Then, testing (1.19) with u+

k and applying (1.12), we obtain

‖∇u+
k ‖p

p,Ω
+
k

≤ Λp(u, u
+
k ) =

∫
Ω+
k

f(x, u)u+
k dx+

∫
Ω+
k

(ξφ+ h)u+
k dx

≤ γ0

∫
Ω+
k

(u− k)q dx+
(
γ0(kq−1 + 1) + |ξ|‖φ‖∞,Ω + ‖h‖∞,Ω

) ∫
Ω+
k

(u− k) dx.

(4.16)
At this point, it suffices to consider the case when q ≥ p. For if 1 < q < p, then
in view of (1.12), by virtue of Young’s inequality, there exist constants γ∗0 > 0 and
q∗ ≥ p > q such that

f(x, s) ≤ γ0(1+|s|q−1) ≤ γ∗0(1+|s|q
∗−1), for all s ∈ R, and uniformly for x ∈ Ω.

Then, since λN (Ω+
k )

k→∞−→ 0 (proof similar as previous case), we select k1 > 0 large

enough, such that ‖∇u+
k ‖p,Ω+

k

≤ 1 for all k ≥ k1. Thus for each k ≥ k1, we have

‖∇u+
k ‖

q

p,Ω
+
k

≤ ‖∇u+
k ‖

p

p,Ω
+
k

( q ≥ p ). (4.17)
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Applying Hölder’s inequality and recalling (2.7), one sees that

∫
Ω+
k

(u−k)q dx ≤ λN (Ω+
k )

1− q(N−p)
Np

c1

(
‖∇u+

k ‖
q

p,Ω
−
k

+ λN (Ω+
k )( qp−1))

∫
Ω+
k

(u− k)q dx

)
.

(4.18)

In view of (4.18), (4.16) and (4.17), we have(
λN (Ω+

k )
q(N−p)
Np

−1

− c1(λN (Ω+
k )

q
p
−1

+ γ0)

)∫
Ω+
k

(u− k)q dx

≤ c1
(
γ0(kq−1 + 1) + |ξ|‖φ‖∞,Ω + ‖h‖∞,Ω

) ∫
Ω+
k

(u− k) dx. (4.19)

In the same way as before, we can find a constant k2 > 0 sufficiently large (and
independent of u), such that

λN (Ω+
k )

q(N−p)
Np

−1

− c1(λN (Ω+
k )

q
p
−1

+ γ0) ≥
λN (Ω+

k )
q(N−p)
Np

−1

2
, for all k ≥ k2.

(4.20)
Also, we select k3 > 0 such that

λN (Ω+
k ) ≤ 1

2
λN (Ω) and λN (Ωk) ≤ 1

2
λN (Ω), for all k ≥ k3. (4.21)

Then, for each k ≥ k0 := max{k1, k2, k3}, we apply Hölder’s inequality in (4.19) to
obtain that∫

Ω+
k

(u−k) dx ≤ λN (Ω+
k )

1− 1
q

 c1{γ0(1 + kq−1) + |ξ|‖φ‖∞,Ω + ‖h‖∞,Ω}

λN (Ω+
k )

q(N−p)
Np

−1

− c1(λN (Ω+
k )

q
p
−1

+ γ0)

∫
Ω+
k

(u− k) dx

1/q

.

(4.22)
Combining (4.22) with (4.20) yields that

∫
Ω+
k

(u−k) dx ≤ λN (Ω+
k )

1+ 1
q−1

(
1− q

p
N

)
k

[
c1
2

(
γ0 +

γ0 + |ξ|‖φ‖∞,Ω + ‖h‖∞,Ω
kq−1

0

)]1/(q−1)

,

where we recall that the constant p
N

is given by (4.4). This last calculation to-
gether with Lemma 2.3 entail that ‖u+‖∞,Ω is bounded by a constant depend-
ing on p, N, γ0, ξ, ‖φ‖∞,Ω , ‖h‖∞,Ω , and ‖u+‖

1,Ω
+
k

. To complete the proof, we

must bound ‖u+‖
1,Ω

+
k

by a constant independent of u. In fact, noticing that

k0 := max{k1, k2, k3}, using (4.17) and (1.12), and applying Hölder’s inequality
together with Young’s inequality, we have the following calculation.

‖∇u+
k0
‖pN
p,Ω

+
k0

≤ ‖∇u+
k0
‖p
p,Ω

+
k0

≤ Λp(u, u
+
k0

)

=

∫
Ω+
k0

f(x, u)u+
k0
dx+

∫
Ω+
k0

(ξφ+ h)u+
k0
dx

≤ γ0

∫
Ω+
k0

(u)q−1(u− k0) dx+
(
γ0 + |ξ|‖φ‖∞,Ω + ‖h‖∞,Ω

) ∫
Ω+
k0

(u− k0) dx
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≤ ε ‖u+‖pN
p
N
,Ω

+
k0

+

(
2

ε

) q
p
N
−q {

γ0λN (Ω)
q−1
q

} p
N

p
N
−q

+

+

(
2

ε

) 1
p
N
−1 (

γ0 + |ξ|‖φ‖∞,Ω + ‖h‖∞,Ω
) p

N
p
N
−1

λN (Ω), (4.23)

for all ε > 0. On the other hand, taking into account (4.21) and the selection of
k0 > 0, since λN

(
Ω \ Ω+

k0

)
> 1

2λN (Ω) > 0, and u+
k0

= 0 over Ω \ Ω+
k0

, one applies

(2.7) and (2.9) to deduce that

‖u+‖pN
p
N
,Ω

+
k0

≤ Cp

(
‖u+

k0
‖pN
p
N
,Ω

+
k0

+ k
p
N

0 λN (Ω)

)
≤ C ′p

(
‖∇u+

k0
‖pN
p,Ω

+
k0

+ k
p
N

0 λN (Ω)

)
,

(4.24)
for some constant Cp > 0, and for C ′p := Cp max{1, c1c3}. Selecting ε := 1/2,
combining (4.23) and (4.24), and applying Young’s inequality, we get

‖u+‖
1,Ω

+
k

≤ ‖u+‖
1,Ω

+
k0

≤
{

2C ′p

(
‖∇u+

k0
‖pN
p,Ω

+
k0

+ (k
p
N

0 + 1)λN (Ω)

)}1/p
N

≤ C∗ξ (k0),

(4.25)
where

C∗ξ (k0) :=

2C ′p

(1 + k
p
N

0 )λN (Ω) + 4
q

p
N
−q
{
γ0λN (Ω)

q−1
q

} p
N

p
N
−q

+

+4
1

p
N
−1 (

γ0 + |ξ|‖φ‖∞,Ω + ‖h‖∞,Ω
) p

N
p
N
−1

λN (Ω)

)}1/p
N

, (4.26)

which is independent of u and k. Thus we have found the desired bound for
‖u+‖

1,Ω
+
k0

, completing the proof of the theorem.

Next, we establish that weak solutions of the Ambrosetti–Prodi problem (1.1)
are globally bounded. Such result is automatically true when p > N (by virtue of
the Sobolev inequality). Thus we will prove it for the critical case, namely, when
1 < p < N (the case p ≥ N follows in an even simpler way). Furthermore, an a
priori estimate for the difference of weak solutions is established.

Theorem 4.3. Let Assumption 1.3 hold, let f1, f2 : Ω × R→ R be Carathéodory
functions satisfying the conditions (1.4), (1.11), and (1.12), let φ1, φ2, h1, h2 ∈
L∞(Ω) with φ1, φ2 > 0 a.e. in Ω, and let ξ1, ξ2 ∈ R be parameters

(a) If u ∈ Wp(Ω) is a weak solutions of either (1.1), or (1.2), then there exists a
constant c6(ξ) > 0 such that

|‖(u, u|
Γ
)‖|p−1

∞
≤ c6(ξ). (4.27)

(b) Assume that p > 2N
N+2 . If u1, u2 ∈ Wp(Ω) are weak solutions of either (1.1),

or (1.2), related to f1, φ1, h1, ξ1 and f2, φ2, h2, ξ2, respectively, then there
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exists a constant c7(ξ1, ξ2) > 0 such that

|‖(u1 − u2, u1|Γ − u2|Γ)‖|p−1

∞
≤ c7(ξ1, ξ2). (4.28)

Proof. We only prove part (b), for part (a) follows similarly (and even in a simpler
way). Again we deal both cases at once. As the arguments run similarly as in
[48, Theorem 3.2] and [49, Theorem 5.1], we will only sketch the main steps of the
proof. Let f1, f2 and ξ1, ξ2 be as in the theorem. Recall that we are assuming all
the conditions of Assumption 1.3.
• First suppose that 2N(N + 2)−1 < p < 2. Let u1, u2 ∈ Wp(Ω) be weak solutions
of either (1.1), or (1.2), related to f1, ξ1 and f2, ξ2, respectively. Let w := u1 − u2,
and let k ≥ k0 > 0 be a real number, where k0 > 0 denotes the constant appearing
in the proof of Theorem 3.1. Now let ŵk be defined by (4.1) (but now with respect to
w := u1 − u2). Then ŵk ∈ Wp(Ω), with (∇ŵk)|

Ω
= (∇w)χ

Ωk
. Next, for ε ∈ (0, 1],

let Cp,ε := min{cp, c∗p, c′p, cp,ε} > 0, where cp, c
∗
p, c
′
p, cp,ε denote the constants in

Proposition 2.4 (for r = p). Then there exists a constant Cp > 0 such that

Cp,ε ≥ C−1
p ε2−p, for all ε ∈ (0, 1]. (4.29)

Now, we consider the following nonlinear form Λ
(n)
p (·, ·) by

Λ(n)
p (u, v) := Λp(u, v)− E(p)(u, v) +

〈
∂L̃(p)

n (u), v
〉
, (4.30)

for u, v ∈ Wp(Ω), where the form Λp(·, ·) is given by (1.20), and the last term is
defined in (4.6). By the Dominated Convergence Theorem, one has

lim
n→∞

∫
I

Λ(n)
p (u, v) dt = Λp(u, v)

for all u, v ∈ Wp(Ω). Then, we define the following sets:

Ω1(ε) := {x ∈ Ω : |∇w(x)| ≥ εmin{|∇u1(x)|, |∇u2(x)|}} ,

Ω2(ε) := {(x, y) ∈ Ω× Ω : |w(x)− w(y)| ≥ εmin{|u1(x)− u1(y)|, |u2(x)− u2(y)|}} .

Γ1(ε) := {(x, y) ∈ Γ× Γ : |w(x)− w(y)| ≥ εmin{|u1(x)− u1(y)|, |u2(x)− u2(y)|}} .

Ω1
k(ε) := Ω1(ε)∩Ωk, Ω2

k(ε) := Ω2(ε)∩(Ωk×Ωk), Γ1
k(ε) := Γ1(ε)∩(Γk×Γk),

V
(i)
0,k (ε) := Γ1(ε) ∩ V (i)

0,k .

Ω̃1
k(ε) := Ωk \Ω1

k(ε), Ω̃2
k(ε) := (Ωk×Ωk) \Ω2

k(ε), Γ̃1
k(ε) := (Γk×Γk) \Γ1

k(ε),

Ṽ
(i)
0,k (ε) := (V

(i)
0,k × V

(i)
0,k ) \ V (i)

0,k (ε).

Here we recall that V
(i)
0,k := {ξ ∈ V (i)

0 : w(ψκi(ξ)) ≥ k}, for κi := i1, . . . , in (e.g.

(4.6)). Then, as (ΘΩw)ŵk ≥ (ΘΩŵk)ŵk, (ΘΓw)ŵk ≥ (ΘΓŵk)ŵk, and
〈
∂L̃(p)

n (w), ŵk

〉
≥〈

∂L̃(p)
n (ŵk), ŵk

〉
(e.g. [50, Proof of Theorem 5.7]), Applying Proposition 2.4 for

ε ∈ (0, 1], we obtain that
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Λ
(n)
p (u1, ŵk)− Λ

(n)
p (u2, ŵk)

≥ Cp,ε

(
Λ

(n)
p (ŵk, ŵk)−

∫
Ω̃1
k(ε)

|∇ŵk|p dx−
∫

Ω̃2
k(ε)

|ŵk(x)− ŵk(y)|p

|x− y|ςp+N
dxdy+

−
∫

Γ̃1
k(ε)

|ŵk(x)− ŵk(y)|p

|x− y|γp+d
dµxdµy −

1

p

4∑
κi=1

∑
ξ,ς∈Ṽ (i)

0,k(ε) ξ 6=ς

|ŵk(ψκi(ξ))− ŵk(ψκi(ς))|p

|ψκi(ξ)− ψκi(ς)|dp


≥ Cp,ε

[
Λ

(n)
p (ŵk, ŵk)− εp

∫
Ω̃1
k,ε

(|∇u1|p + |∇u2|p) dx

]
+

−εpCp,ε

(∫
Ω̃2
k(ε)

|u1(x)− u1(y)|p

|x− y|ςp+N
dxdy +

∫
Ω̃2
k(ε)

|u2(x)− u2(y)|p

|x− y|ςp+N
dxdy

)
+

−εpCp,ε

(∫
Γ̃1
k(ε)

|u1(x)− u1(y)|p

|x− y|γp+d
dµxdµy +

∫
Γ̃1
k(ε)

|u2(x)− u2(y)|p

|x− y|γp+d
dµxdµy

)
+

− εpCp,ε

1

p

4∑
κi=1

∑
ξ,ς∈Ṽ (i)

0,k(ε) ξ 6=ς

|u1(ψκi(ξ))− u1(ψκi(ς))|p

|ψκi(ξ)− ψκi(ς)|dp

+

− εpCp,ε

1

p

4∑
κi=1

∑
ξ,ς∈Ṽ (i)

0,k(ε) ξ 6=ς

|u2(ψκi(ξ))− u2(ψκi(ς))|p

|ψκi(ξ)− ψκi(ς)|dp

 .

Thus in virtue of (4.29) we see that

Λ(n)
p (ŵk, ŵk) ≤ 1

Cp,ε

[
Λ(n)
p (u1, ŵk)− Λ(n)

p (u2, ŵk)
]
+εp

[
Λ(n)
p (u1, u1) + Λ(n)

p (u2, u2)
)

≤ Cp
ε2−p

[
Λ(n)
p (u1, ŵk)− Λ(n)

p (u2, ŵk)
]

+ εp
[
Λ(n)
p (u1, u1) + Λ(n)

p (u2, u2)
]
.

Applying Proposition 2.5 with

r := p, τ := Cp, % := 2− p, ξ := Λ(n)
p (ŵk, ŵk),

ς := Λ(n)
p (u1, ŵk)− Λ(n)

p (u2, ŵk), and c := Λ(n)
p (u1, u1) + Λ(n)

p (u2, u2),

we get from (2.17) that

Λ
(n)
p (ŵk, ŵk) ≤ (Cp+1)

([
Λ

(n)
p (u1, ŵk)− Λ

(n)
p (u2, ŵk)

] p2 [
Λ

(n)
p (u1, u1) + Λ

(n)
p (u2, u2)

] 2−p
2

)
+

+ (Cp + 1)
[
Λ(n)
p (u1, ŵk)− Λ(n)

p (u2, ŵk)
]
. (4.31)

Since

0 ≤ Λ(n)
p (u1, ŵk)− Λ(n)

p (u2, ŵk) ≤ 4
[
Λ(n)
p (u1, u1) + Λ(n)

p (u2, u2)
]
,
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one gets from (4.31) that

Λ(n)
p (ŵk, ŵk) ≤ C ′p

([
Λ(n)
p (u1, ŵk)− Λ(n)

p (u2, ŵk)
] p2 [

Λ(n)
p (u1, u1) + Λ(n)

p (u2, u2)
] 2−p

2

)
,

(4.32)

where C ′p := (Cp + 1)(1 + 2
2−p

) > 0. Since

Λp(ŵk, ŵk) = Λ(n)
p (ŵk, ŵk) + E(p)(ŵk, ŵk)−

〈
∂L̃(p)

n (ŵk), ŵk

〉
,

using this in (4.32), passing to the limit, and applying the Dominated Convergence
Theorem, we arrive at

Λp(ŵk, ŵk) ≤ C

(
[Λp(u1, ŵk)− Λp(u2, ŵk)]

p
2

[Λp(u1, u1) + Λp(u2, u2)]
2−p

2

)
.

(4.33)
In the following, the constant C > 0 may vary from line to line. Next, recalling that
u1, u2 ∈ Wp(Ω) solve (1.19) related to f1, ξ1 and f2, ξ2, respectively, using (1.10)
and (1.12) (depending on the sign of u1, u2), and applying Theorem 4.2, gives

Λp(u1, u1) + Λp(u2, u2) =

2∑
i=1

(∫
Ω

fi(x, ui)ui dx+

∫
Ω

(ξiφi + hi)ui dx

)

≤ C

2∑
i=1

(
‖ui‖pp,Ω + ‖ui‖qq,Ω + λN (Ω) +

|ξi|‖φi‖∞,Ω + ‖hi‖∞,Ω
C

‖ui‖1,Ω
)
≤ Mξ1,ξ2 ,

(4.34)

for some constant Mξ1,ξ2 > 0 which depends on the L∞ bounds on Theorem 4.2
(with respect to ξ1, ξ2). We recall (4.21) and the selection of k0 > 0 to notice that
λN (Ω \ Ωk) > 1

2λN (Ω) > 0, and ŵk = 0 over Ω\Ωk. Thus, combining (1.9), (1.10),
(1.12), (2.7), (2.9), (4.33), (4.34), and Theorem 4.2, we deduce that

‖ŵk‖pWp(Ω)
≤ C Λp(ŵk, ŵk)

≤ CM
1− p

2

ξ1,ξ2

(∫
Ωk

|f(x, u1)− f(x, u2)||ŵk| dx+

∫
Ωk

|(ξ1φ1 + h1)− (ξ2φ2 + h2)||ŵk| dx
) p

2

≤ CM∗ξ1,ξ2 |‖~χk,ρ‖|
p
2

p′
N
,r
d

‖ŵk‖
p
2

Wp(Ω)
, (4.35)

for r
d

:= dp(Np−N + p)−1 > 0, where

M∗ξ1,ξ2 := M
1− p

2

ξ1,ξ2

(
2∑
i=1

(
|Cξi |p−1 + |Cξi |q−1 + |ξi|‖φi‖∞,Ω + ‖hi‖∞,Ω

)
+M + γ0

) p
2

and

~χk := (χ
Ak
, χ

Ak
|
Γ
) (χ

E
the characteristic function of a set E ).

Now let h > k, and observe that Ah ⊆ Ak and that |ŵk| ≥ h − k over Ah (recall
(4.2) for the definition of the set Ak). In view of (2.7), (2.8) and (4.35), we get

(h− k)
p
2 |‖~χh‖|

p
2

p
N
,p
d
≤ CM∗ξ1,ξ2 |‖~χk‖|

p
2

p′
N
,r
d

. (4.36)
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Setting

Φp(t) := |‖~χt‖|
p
2

p
N
,p
d

(4.37)

for each t ∈ [0,∞), one gets from (4.36) that

Φp(h) ≤ CM∗ξ1,ξ2(h− k)
− p

2

(
Φp(k)

p
N
p′
N + Φp(k)

p
d
r
d

)
. (4.38)

As 2N(N + 2)−1 < p < 2, we see that

p
N

p′
N

=
p
d

r
N

=
Np−N + p

N − p
:= δ > 1,

and thus it follows from (4.38) that

Φp(h) ≤ 2CM∗ξ1,ξ2(h− k)
− p

2 Φp(k)δ. (4.39)

we apply Lemma 2.2 to the function Φp(·) to conclude that

Φp(ζ) = 0, for ζp/2 := CM∗ξ1,ξ2Φp(k0)δ−1. (4.40)

Now (4.40) implies that there exists a constant c∗ > 0 such that

|u− v| ≤ c∗
(
M∗ξ1,ξ2

)2/p
a.e. on Ω, (4.41)

which shows (4.28) for the case 2N(N + 2)−1 < p < 2.
• Assume now that p ∈ [2,∞). As mentioned before (in section 1), it suffices to
consider the critical case, namely, when p < N (since for p ≥ N the embedding
results are much more sharp, and much better). The proof of this case follows as in
the previous one (and even in a simpler way), we will only sketch the main steps of
it. Given u1, u2 ∈ Wp(Ω) weak solutions of either (1.1), or (1.2), related to f1, ξ1
and f2, ξ2, respectively, let w := u1 − u2, let k ≥ k0 be a real number (for k0 > 0
defined as in the previous case), and let ŵk be defined by (4.1). A direct calculation
(similar to the previous case) shows that

Λp(u1, ŵk)− Λp(u2, ŵk) ≥ ς0 Λp(ŵk, ŵk) ≥ ς ′0‖ŵk‖pWp(Ω)
, (4.42)

for some constants ς0, ς
′
0 > 0. Proceeding exactly as in the previous case, one sees

that

(h− k)p−1|‖~χh‖|p−1
p
N
,p
d
≤ M ′ξ1,ξ2 |‖~χk‖|p′

N
,r
d
, (4.43)

for some constant M ′ξ1,ξ2 > 0 (that can be computed similarly as in the previous

case), for h > k, where we recall that r
d

:= dp(Np−N + p)−1. Letting

Ψp(t) := |‖~χt‖|p−1
p
N
,p
d

and δ′ :=

(
1

p− 1

)(
Np−N + p

N − p

)
> 1,
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one can proceed in the same way as before to conclude that

|u− v| ≤ C ′ξ1,ξ2 a.e. on Ω, (4.44)

for some constant C ′ξ1,ξ2 > 0. Therefore, (4.44) leads to (4.28) when p ∈ [2, N), and
completes the proof of the theorem.

5. Sub-supersolution method for nonlocal equations. In this part we will de-
rive an alternative sub-supersolution method for the problems (1.1) and (1.2), which
will be very useful in the establishment of the main results of the paper. Although
some arguments will follow similar approaches as in [33, 34], to our knowledge, there
is no sub-supersolution method for nonlocal equations of type (1.1) and (1.2). Re-
call that all the arguments will be carried out under the assumptions (1.4), (1.11),
and (1.12).

To begin our discussion, given F ⊆ Wp(Ω) closed and convex (where we recall

that Wp(Ω) is defined by (1.16)), we consider the following variational inequality Λp(u, ϕ− u) ≥
∫

Ω

f(x, u)(ϕ− u) dx+

∫
Ω

(ξφ+ h)(ϕ− u) dx, ∀ϕ ∈ F,

u ∈ F,
(5.1)

where we recall that Λp(·, ·) is defined by (1.20).
Before giving the corresponding definitions for subsolutions and supersolutions

of the Eq. (5.1), we will fix some additional notations that will be frequently
used in this section. Indeed, for u, v ∈ Wp(Ω) and D, F ⊆ Wp(Ω), we denote
u ∨ v := max{u, v}, u ∧ v := min{u, v}, and

D ? F := {u ? v : u ∈ D, v ∈ F}, u ? F := {u} ? F,
where ? denotes either ∨ or ∧.

Definition 5.1. A function û ∈ Wp(Ω) is said to be a subsolution of (5.1), if
û ∨ F ⊆ F , and

Λp(û, ϕ− û) ≥
∫

Ω

f(x, û)(ϕ− û) dx+

∫
Ω

(ξφ+h)(ϕ− û) dx, ∀ϕ ∈ û∧F. (5.2)

Also, ǔ ∈ Wp(Ω) is said to be a supersolution of (5.1), if ǔ ∧ F ⊆ F , and

Λp(ǔ, ϕ− ǔ) ≥
∫

Ω

f(x, ǔ)(ϕ− ǔ) dx+

∫
Ω

(ξφ+h)(ϕ− ǔ) dx, ∀ϕ ∈ ǔ∨F. (5.3)

Suppose that û1, . . . , ûk ∈ Wp(Ω) (resp. ǔ1, . . . , ǔm ∈ Wp(Ω)) are subsolutions
(resp. supersolutions) of (5.1) (for k, m ∈ N). Then, we will set

û0 := max{û1, . . . , ûk}, and ǔ0 := min{ǔ1, . . . , ǔm}. (5.4)

Then, we can state and prove the following important result.
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Theorem 5.2. Let û1, . . . , ûk ∈ Wp(Ω) (resp. ǔ1, . . . , ǔm ∈ Vp(Ω)) be subsolutions
(resp. supersolutions) of (5.1) (for k, m ∈ N). If û1, . . . , ûk (resp. ǔ1, . . . , ǔm) are
bounded functions in Ω, with û0 ≤ ǔ0, then there exists a solution u ∈ Wp(Ω) of
(5.1) such that û0 ≤ u ≤ ǔ0.

Proof. Again, we restrict our proof to the critical case 1 < p < N .
Choose r ∈ (1,∞) such that

max{p, q} < r <

{
Np
N−p , if 1 < p < N,

∞, if p ≥ N.
(5.5)

Then we consider the following truncating-regularizing function: Ψ : Ω×R→ R, by

Ψ(x, s) :=


(s− ǔ0(x))r−1, if s > ǔ0(x),

0, if û0(x) ≤ s ≤ ǔ0(x),

−(û0(x)− s)r−1, if s < û0(x),

(5.6)

for each (x, s) ∈ Ω × R. Since û0, ǔ0 ∈ L∞(Ω), we can find constants α1, α
′
1 > 0

such that

|Ψ(x, s)| ≤ α1 + α′1|s|r−1, for a.e. (x, s) ∈ Ω× R. (5.7)

Now, define the operator Sp :Wp(Ω)→Wp(Ω)∗, by:

(Spv)w :=

∫
Ω

Ψ(x, v)w dx, for v, w ∈ Wp(Ω). (5.8)

Since the embedding Wp(Ω) ↪→ Lr(Ω) is compact, it follows that Sp is well-defined,
bounded, and completely continuous. Moreover, a direct calculation shows that

(Spv)v ≥ α′2

∫
Ω

|v|r dx− α2, for all v ∈ Wp(Ω), (5.9)

for some constants α2, α
′
2 > 0 (cf. [33, Proof of Theorem 3.1]). Next, define the

operator Bp :Wp(Ω)→Wp(Ω)∗, by

(Bp(·))(·) := Λp(·, ·), (5.10)

where we recall that Λp(·, ·) is defined by (1.20). Recalling the definition of Wp(Ω)
and in view of (2.10) and (2.11), it is easy to see that Bp is bounded, continuous,
and monotone. Moreover, it is coercive in the sense that

(Bpv)v ≥ c0

(
‖∇v‖p

p,Ω
+K(p)(v, v) + (ΘΩv + ΘΓv)v

)
, (5.11)

for every v ∈ Wp(Ω), and for some constant c0 > 0 (recall that K(p)(·, ·), ΘΩ , and
Θ

Γ
are given by (4.7), (1.5), and (1.6), respectively). Furthermore, we define an-

other operator Gp :Wp(Ω)→Wp(Ω)∗, by

(Gpv)w := −
∫

Ω

f(x, τ00v)w dx+

m∑
j=1

∫
Ω

|f(x, τ0jv)− f(x, τ00v)|w dx+
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−
k∑
i=1

∫
Ω

|f(x, τi0v)− f(x, τ00v)|w dx−
∫

Ω

(ξφ+ h)v dx, (5.12)

for each v, w ∈ Wp(Ω), where

(τijv)(x) :=


ǔj(x), if v(x) > ǔj(x),

v(x), if ûi(x) ≤ v(x) ≤ ǔj(x),

ûi(x), if v(x) < ûi(x),

(5.13)

(where k, m ∈ N, i ∈ {0, . . . , k}, and j ∈ {0, . . . ,m}). From the boundedness of
û1, . . . , ûk (resp. ǔ1, . . . , ǔm) over Ω, the continuity of the mapping τij : Wp(Ω)→
Wp(Ω), and the compactness of the embedding Wp(Ω) ↪→ Lr(Ω), one can deduce

that Gp is well-defined, bounded, and completely continuous over Wp(Ω). Then we
consider the variational inequality, formally given by{

(Spv + Bpv + Gpv)(ϕ− v) ≥ 0, ∀ϕ ∈ F,
v ∈ F, (5.14)

where Sp, Bp, and Gp are defined by (5.8), (5.10), and (5.12), respectively. From
the properties of Sp, Bp, and Gp, it follows that the operator Tp := Sp + Bp + Gp is

bounded, and pseudo-monotone over Wp(Ω). (cf. [45, pag. 40-41]). Moreover, we
claim that Tp is coercive, in the sense that

lim
‖v‖
W̃p(Ω)

→∞

(Tpv)(v − v0)

‖v‖
W̃p(Ω)

= ∞, (5.15)

for each bounded function v0 ∈ F , where we recall the semi-norm

‖w‖p
W̃p(Ω)

:= ‖∇w‖p
p,Ω

+K(p)(w,w), for w ∈ Wp(Ω).

In fact, we first observe that

(Tpv)(v−v0) ≥ (Spv)v+(Bpv)v−|(Spv)v0|−|(Bpv)v0|−
∫

Ω

(|ξ|φ+|h|)(|v|+|v0|) dx+

−

∫
Ω

|f(x, τ00v)|(|v|+ |v0|) dx+

m∑
j=1

∫
Ω

(|f(x, τ0jv)|+ |f(x, τ00v)|) (|v|+ |v0|) dx

+

−
k∑
i=1

∫
Ω

(|f(x, τi0v)|+ |f(x, τ00v)|) (|v|+ |v0|) dx. (5.16)

Define now the operator B(n)
p by

(B(n)
p (·))(·) := Λ(n)

p (·, ·), (5.17)

for the form Λ
(n)
p (·, ·) given by (4.30). As before, one has

(Bpu)v = lim
n→∞

∫
I

[(B(n)
p u)v] dt, ∀u, v ∈ Wp(Ω).

Moreover, by virtue of Young’s inequality and the following inequality for p-Lagrangian
(see 2.9 in [8]), L(p)(u, v) ≤ εL(p)(u, u) + cεL(p)(v, v), and thus
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|(B(n)
p v)v0| ≤ ε

(
‖∇v‖p

p,Ω
+
〈
∂L̃(p)

n (v), v
〉

+ (Θ
Ω
v + Θ

Γ
v)v
)

+ Cε

(
‖∇v0‖pp,Ω +

〈
∂L̃(p)

n (v0), v0

〉
+ (Θ

Ω
v0 + Θ

Γ
v0)v0

)
,

for every ε > 0, and for some constant Cε > 0. Passing to the limit in the above
inequality, one deduces from the Dominated Convergence Theorem that

|(Bpv)v0| ≤ ε
(
‖∇v‖p

p,Ω
+K(p)(v, v) + (Θ

Ω
v + Θ

Γ
v)v
)

+ Cε

(
‖∇v0‖pp,Ω +K(p)(v0, v0) + (Θ

Ω
v0 + Θ

Γ
v0)v0

)
, (5.18)

for every ε > 0. Furthermore, recalling the definition of τij(·), using (1.12), (5.7),
and Young’s inequality, we get that

|(Spv)v0| ≤ α1‖v0‖1,Ω + α′1

∫
Ω

|v|r−1|v0| dx ≤ ε‖v‖r
r,Ω

+ C ′ε‖v0‖rr,Ω + C1, (5.19)

and∫
Ω

|f(x, τijv)|(|v|+ |v0|) dx+

∫
Ω

(|ξ|φ+ |h|)(|v|+ |v0|) dx

≤ γ0

∫
Ω

|v|q−1(|v|+ |v0|) dx+
(
γ0 + |ξ|‖φ‖∞,Ω + ‖h‖∞,Ω

) ∫
Ω

(|v|+ |v0|) dx

= γ0‖v‖qq,Ω +

∫
Ω

|v|q−1|v0| dx+
(
γ0 + |ξ|‖φ‖∞,Ω + ‖h‖∞,Ω

) ∫
Ω

(|v|+ |v0|) dx

≤ (3γ0 + 1)ε ‖v‖r
r,Ω

+ C ′εγ0‖v0‖
r

r−q+1

r
r−q+1

,Ω
+
(
γ0 + |ξ|‖φ‖∞,Ω + ‖h‖∞,Ω

)
‖v0‖1,Ω+

+ C ′ε
{

2γ0 +
(
|ξ|‖φ‖∞,Ω + ‖h‖∞,Ω

)}
λN (Ω)

≤ (3γ0 + 1)ε ‖v‖r
r,Ω

+Mε(v0, γ0, ξ, ‖φ‖∞,Ω , ‖h‖∞,Ω), (5.20)

for every ε > 0, and for some constants Cε, C
′
ε, C1, C2 > 0, and for a constant

Mε(v0, γ0, ξ, ‖φ‖∞,Ω , ‖h‖∞,Ω) > 0. Taking into account (5.9), (5.11) and the bound-
edness of v0, selecting ε > 0 suitably, and combining (5.18), (5.19) and (5.20) into
(5.16), we deduce that

(Tpv)(v − v0) ≥ C3‖v‖p
W̃p(Ω)

−M∗(v0, γ0, ξ, ‖φ‖∞,Ω , ‖h‖∞,Ω), (5.21)

for all v ∈ Wp(Ω) and v0 ∈ F bounded, for some constant C3 > 0, and for a constant
M∗(v0, γ0, ξ, ‖φ‖∞,Ω , ‖h‖∞,Ω) > 0. Thus, (4.36) leads to (5.15), proving the desired
claim, and as a consequence, the above properties for the operator Tp ensure that
Eq. (5.1) has a solution u ∈ F (cf. [35]). To complete the proof of the theorem,
we show that ûi ≤ u ≤ ǔj for all i ∈ {1, . . . , k} and j ∈ {1, . . . ,m}. Indeed, to
establish the first inequality, we use the fact that ûi is a subsolution of (5.1), and
we put vi := u+ (ûi − u)+ = ûi ∨ u ∈ F . Then, testing (5.14) with the function vi,
we get

0 ≤ Λp(u, (ûi − u)+) +

∫
Ω

Ψ(x, u)(ûi − u)+ dx−
∫

Ω

(ξφ+ h)(ûi − u)+ dx+
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−
∫

Ω

f(x, τ00u)(ûi − u)+ dx+

m∑
j=1

∫
Ω

|f(x, τ0ju)− f(x, τ00u)| (ûi − u)+ dx+

−
k∑
s=1

∫
Ω

|f(x, τs0u)− f(x, τ00u)| (ûi − u)+ dx. (5.22)

On the other hand, as ûi ∈ F is a subsolution of (5.1), testing (5.2) with the func-
tion wi := ûi − (ûi − u)+ = ûi ∧ u ∈ ûi ∧ F , one sees that

0 ≤ −Λp(ûi, (ûi−u)+) +

∫
Ω

(ξφ+h)(ûi−u)+ dx+

∫
Ω

f(x, ûi)(ûi−u)+ dx. (5.23)

Adding (5.22) and (5.23), we get

0 ≤ Λp(u, (ûi − u)+)− Λp(ûi, (ûi − u)+) +

∫
Ω

[f(x, ûi)− f(x, τ00u)](ûi − u)+ dx+

+

∫
Ω

Ψ(x, u)(ûi − u)+ dx+

m∑
j=1

∫
Ω

|f(x, τ0ju)− f(x, τ00u)| (ûi − u)+ dx+

−
k∑
s=1

∫
Ω

|f(x, τs0u)− f(x, τ00u)| (ûi − u)+ dx. (5.24)

Now, for each i ∈ {1, . . . , k} and j ∈ {1, . . . ,m}, we see that u(x) < ûi(x) ≤
û0(x) ≤ ǔ0(x) ≤ ǔj(x) for every x ∈ {y ∈ Ω : u(y) < ûi(y)}. Therefore we have

τ00u = τ0ju = û0 and τi0u = ûi over {y ∈ Ω : u(y) < ûi(y)}. The combination of
all these properties entails that∫

Ω

[f(x, ûi)−f(x, τ00u)](ûi−u)+ dx−
k∑
s=1

∫
Ω

|f(x, τs0u)− f(x, τ00u)| (ûi−u)+ dx

≤
∫

Ω∩{u<ûi}
(f(x, ûi)− f(x, û0)− |f(x, û0)− f(x, ûi)|) (ûi − u)+ dx ≤ 0, (5.25)

and ∫
Ω

|f(x, τ0ju)− f(x, τ00u)| (ûi − u)+ dx

=

∫
Ω∩{u<ûi}

|f(x, û0)− f(x, û0)| (ûi − u)+ dx = 0. (5.26)

Moreover, using (2.12), it is clear that

Λ(n)
p (u, (ûi − u)+)− Λ(n)

p (ûi, (ûi − u)+) ≤ 0,

where we recall the definition of Λ
(n)
p (·, ·) given in (4.30). Thus by the Dominated

Convergence Theorem, we obtain that

Λp(u, (ûi − u)+)− Λp(ûi, (ûi − u)+) ≤ 0, (5.27)

and from here we combine (5.24), (5.25), (5.26), and (5.27), to get that

0 ≤
∫

Ω

Ψ(x, u)(ûi − u)+ dx ≤ −
∫

Ω∩{u<ûi}
(ûi − u)r dx ≤ 0. (5.28)
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Inequality (5.28) shows that u ≥ ûi a.e. in Ω, for each i ∈ {1, . . . , k}. Now, similar
arguments can be employed to deduce as well that u ≤ ǔj for every j ∈ {1, . . . ,m},
and consequently û0 ≤ u ≤ ǔ0 a.e. on Ω. In addition, recalling (5.6) and (5.13),
we have that Ψ(x, u) = 0 and τiju = u a.e. in Ω (for all i ∈ {1, . . . , k} and
j ∈ {1, . . . ,m}). Therefore,

(Gpu)v = −
∫

Ω

f(x, u)v dx−
∫

Ω

(ξφ+ h)v dx, ∀ v ∈ E,

and consequently (5.14) becomes (5.1), as desired.

Remark 1. Consider the problem (5.1) for F = Wp(Ω). Then one can observe
that in this case, the variational inequality (5.1) becomes the variational equality
(1.19) given in Definition 1.2. Thus in this case, a solution of (5.1) becomes a weak
solution of problem (1.1). Furthermore, one can observe that given w ∈ Wp(Ω),
one has

w ∨Wp(Ω) = {v ∈ Wp(Ω) | v ≥ w a.e. in Ω}
and

w ∧Wp(Ω) = {v ∈ Wp(Ω) | v ≤ w a.e. in Ω}.
Consequently, in this case the notion of weak subsolution and supersolution in Def-
inition 5.1 coincides with the formulation for weak subsolutions and supersolutions
given in Definition 1.2(b).

6. Proof of the main result. In this section we focus our attention in establish-
ing the main results of this paper, namely, Theorem 1.4 and Theorem 1.5, assuming
all the conditions in Assumption 1.3. Our approach will be follow arguments similar
as in [48] (with some ideas motivated by the results in [19]). Thus, the proofs of
some intermediate results will be omitted, but as our problem under consideration
is much more general and several results require generalizations and modifications,
more details will be given when needed. In particular, we will give proofs to most
of the results here, and outline the main steps, especially when the generalizations
come into play.

We begin by providing a non-existence result.

Lemma 6.1. If

ξ >
(M + ‖h‖∞,Ω)λN (Ω)

‖φ‖
1,Ω

> 0,

then the problems (1.1) and (1.2) have no weak solution over Wp(Ω).

Proof. We argue as in the proof of Theorem 4.2. In fact, if u ∈ Wp(Ω) is a weak

solution of (1.1), we test (1.19) with the function w ≡ 1. Because
〈
∂L̃(p)

n (u), 1
〉

= 0,

it follows that Λp(u, 1) = 0. By using (1.9) and (1.10), we get

0 =

∫
Ω

f(x, u) dx+

∫
Ω

(ξφ+ h) dx
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≥ η0

∫
Ω

|u|p−1 dx+ ξ‖φ‖
1,Ω
− (M + ‖h‖∞,Ω)λN (Ω),

Since λN (Ω) > 0 and ‖φ‖1,Ω > 0 (since φ > 0 a.e. in Ω), the preceding inequality
implies that

ξ ≤
(M + ‖h‖∞,Ω)λN (Ω)

‖φ‖1,Ω
,

which establishes the desired claim.

Lemma 6.2. For each ξ ∈ R, the constant

cξ := −
( |ξ|‖φ‖∞,Ω + ‖h‖∞,Ω +M

η0

)1/(p−1)

(6.1)

is a weak subsolution of (1.1) and (1.2), and every constant c < cξ is a strict sub-

solution of both (1.1) and (1.2). Moreover, if u ∈ Wp(Ω) is a weak solution of (1.1)

(N = 2), or (1.2) (N = 3), then u(x) ≥ cξ for every x ∈ Ω.

Proof. For simplicity, assume that Ω = Ω3 ∈ R3 (the other case is analogous).
Given cξ defined as in (6.1), by virtue of (1.10) we have

f(x, cξ) ≥ η0|cξ|p−2cξ −M = |ξ|‖φ‖∞,Ω + ‖h‖∞,Ω . (6.2)

Selecting ϕ ∈ Wp(Ω)+ arbitrarily, multiplying the Eq. (6.2) by ϕ, and integrating
over Ω, we get∫

Ω

f(x, cξ)ϕdx ≥ |ξ|‖φ‖∞,Ω
∫

Ω

ϕdx+ ‖h‖∞,Ω
∫

Ω

ϕdx

≥ |ξ|
∫

Ω

φϕdx+

∫
Ω

|h|ϕdx ≥ −
∫

Ω

(ξφ+ h)ϕdx. (6.3)

Thus from (6.3), we get

0 = Λp(cξ, ϕ) ≤
∫

Ω

f(x, cξ)ϕdx+

∫
Ω

(ξφ+ h)ϕdx,

proving that cξ is a weak subsolution of the problem (1.2). Furthermore, if follows
immediately that if c is a constant less than cξ, then c becomes a strict subsolution
of the Eq. (1.2). It remains to show that cξ is a lower bound for any weak solution

u ∈ Wp(Ω) of (1.2). We suppose that the contrary holds, that is, assume that there
exists a constant ε0 > 0 such that the function (cξ− ε0−u(x0))+ is strictly positive

for some x0 ∈ Ω. Given ε ∈ (0, ε0), we set

Ωε,ξ := {x ∈ Ω : u(x) < cξ − ε} 6= ∅ and uε,ξ := (cξ − ε− u)+ ∈ Wp(Ω)+.

Notice that (ΘΩu)uε,ξ ≤ 0, (ΘΓu)uε,ξ ≤ 0, and also in view of (4.5) and (4.6), we

deduce that K(p)(u, uε,ξ) ≤ 0. As ∇uε,ξ = −∇u, testing (1.19) with the function
uε,ξ and applying (1.9), we obtain

‖∇u‖p
p,Ωε,ξ

≤ −Λp(u, uε,ξ) = −
∫

Ωε,ξ

f(x, u)uε,ξ dx−
∫

Ωε,ξ

(ξφ+ h)uε,ξ dx

≤ −η0

∫
Ωε,ξ

|u|p−1uε,ξ dx+ (M + |ξ|‖φ‖∞,Ω + ‖h‖∞,Ω)

∫
Ωε,ξ

uε,ξ dx
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≤ −
(
η0|cξ − ε|p−1 − |ξ|‖φ‖∞,Ω − ‖h‖∞,Ω −M

) ∫
Ωε,ξ

uε,ξ dx.

Recalling the definition of cξ and the selection ε ∈ (0, ε0), the above estimate yields

‖∇u‖p
p,Ωε,ξ

< 0, a clear contradiction. Consequently, u(x) ≥ cξ for all x ∈ Ω,

completing the proof.

Now we establish the first main result of this article.

Proof. [Theorem 1.4] Assume the condition of the theorem. From Lemma 6.1 one
has the statements (1).
To prove the other assertion, for simplicity (as in the previous lemma) we assume
that Ω = Ω3 ∈ R3. Given ξ, ξ′ ∈ R with ξ ≤ ξ′0, we notice that the zero function 0
is a weak supersolution of (1.2) if and only if ξφ(x) ≤ −f(x, 0)−h(x) for a.e. x ∈ Ω.
Thus, set

ξ′0 := inf
x∈Ω

{
−f(x, 0)− h(x)

max{1, φ(x)}

}
.

If ξ ≤ ξ′0, then we get that

−f(x, 0)− h(x) ≥ ξmax{1, φ(x)} ≥ ξφ(x) for a.e. x ∈ Ω,

and consequently 0 is a weak supersolution of (1.2) for all ξ ≤ ξ′0. On the other
hand, by Lemma 6.2, the negative constant cξ given by (6.1) is a weak subsolution
of (1.2) for all ξ. Hence, Theorem 5.2 and Remark 1 imply that (1.2) is solvable
for all ξ ≤ ξ′. Moreover, if (1.2) is solvable for some parameter ξ, and u ∈ Wp(Ω)
is the corresponding weak solution, as φ > 0 a.e. in Ω, it follows that u is a weak
supersolution of (1.2) corresponding to the parameter ζ, for ζ < ξ. Henceforth, by
Lemma 6.2, Theorem 5.2 and Remark 1, we deduce that (1.2) is solvable for all
ζ < ξ. The last statement of the theorem follows directly from Theorem 4.3.

Next we establish the second main result of the paper.

Proof. [Theorem 1.5] Again, without loss of generality, we assume that Ω = Ω3 ∈
R3. Because p ∈ (N,∞), by the Sobolev embedding theorem (see section 2) we
have Wp(Ω) ↪→ C0,δ(Ω) for some δ ∈ (0, 1). If ξ ≤ ξ0, then Theorem 1.4 asserts the
existence of a weak solution of the problem (1.2). In view of the proof of Theorem
1.4, recalling Lemma 6.1, we observe that the set

S = {ξ ∈ R : (1.2) is solvable}

is non-empty, and bounded from above by ξ0 := sup(S). Clearly (−∞, ξ0) ⊆ S.
Now let {ξn} be a non-decreasing sequence of real numbers, such that lim

n→∞
ξn = ξ0.

Denote by uξn the weak solutions of (1.2) with respect to the parameters ξn (n ∈ N).
By virtue of Theorem 4.2 and the Sobolev embedding, the family {uξn}n∈N is
equicontinuous and pointwise bounded. Consequently, by Ascoli’s theorem, we can
find a subsequence {ξnk} of {ξn} such that lim

k→∞
uξnk = uξ0 in C(Ω). Therefore, uξ0

is a weak solution of (1.2), which implies that S = (−∞, ξ0]. It follows that there ex-
ists a minimal weak solution of Eq. (1.2) over the set {w ∈ Wp(Ω) : w ≥ cξ in Ω},
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which proves (1) and (2). To show (3) and (4), we put

ξ1 := sup
s∈R

inf
x∈Ω

{
−f(x, s)− h(x)

max{1, φ(x)}

}
. (6.4)

As h ∈ L∞(Ω), recalling (1.9) and (1.10), we see that −f(x, s) − h(x) is bounded
from above, and thus ξ1 is well-defined. If ξ < ξ1, then one can find s0 ∈ R such
that

ξ < inf
x∈Ω

{
−f(x, s0)− h(x)

max{1, φ(x)}

}
.

Thus, s0 is a weak supersolution of (1.2), cξ is a weak subsolution of (1.2) (cξ
given by (6.1)), and cξ ≤ s0 by virtue of Lemma 6.2. Consequently, from Theorem

5.2 and Remark 1 we deduce that there exists a weak solution uξ ∈ Wp(Ω) with
cξ ≤ uξ ≤ s0. Therefore ξ1 ≤ ξ0. Given f locally Hölder continuous over R,
and uniformly continuous a.e. on Ω, let ξ < ξ1. We search a second distinct weak
solution of (1.2). To achieve this, we will employ the well-known Leray-Schauder
degree theory. Indeed, we can find a constant t > s0 such that

ξ < inf
x∈Ω

{
−f(x, t)− h(x)

max{1, φ(x)}

}
,

and thus t is also a weak supersolution of (1.2). Moreover, by Lemma 6.2, any con-
stant c with c < cξ is a strict weak subsolution of (1.2). Then we define the open set

U := {v ∈ C(Ω) : c < v(x) < t for all x ∈ Ω}. (6.5)

Clearly uξ ∈ U , and furthermore, by (1.11), one can find a constant τ > 0 such

that f(x, u) + τ |u|p−2u is non-decreasing in u over [c, t]. Since uξ ∈ Wp(Ω) ∩ U is
a weak solution of (1.2), it follows that uξ is a fixed point of the compact operator

Kξ : C(Ω) → C(Ω), defined by Kξv = w, for w a weak solution of the boundary
value problem

−∆pw + Θ
Ω
w + τ |w|p−2w = f(x, v) + τ |v|p−2v + ξφ+ h in Ω,

A
V
w + |∇w|p−2 ∂w

∂ν
+ ΘΓw = 0 on Γ

(6.6)

The existence of the solution w ∈ Wp(Ω) ∩ C(Ω) of problem (6.6) can be obtained
in a similar way as in [27, section 4]. If deg(I−Kξ, U, 0) is not well-defined (that is,
if 0 ∈ (I − Kξ)(∂U)), the conclusion (3) follows. Otherwise, let ψ ∈ U , α ∈ [0, 1],

and define the mapping Tα : C(Ω)→ C(Ω), by

Tαv := αKξv + (1− α)ψ.

Notice that

−∆pc+Θ
Ω
c+τ |c|p−2c ≤ −∆p(Kξv)+Θ

Ω
(Kξv)+τ |Kξv|p−2Kξv ≤ −∆pt+Θ

Ω
t+τ |t|p−2t

for all v ∈ U , it follows from the Weak Comparison Principle that Kξv ∈ U for each

v ∈ U , that is, Kξv(x) ∈ [c, t] for each x ∈ Ω. Since U is convex and ψ ∈ U , one
gets that Tα maps U into U for every α ∈ (0, 1], which yields that 0 /∈ (I −Tα)(∂U)
for all α ∈ [0, 1]. In this way, deg(I − Tα, U, 0) is well-defined and independent of
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α. Moreover, as ψ ∈ U and T0v = ψ for all v ∈ U , we obtain that

deg(I −Kξ, U, 0) = deg(I − Tα, U, 0) = deg(I − T0, U, 0) = 1. (6.7)

On the other hand, for a sufficiently large constant ϑ > c6(ξ) > 0 (for c6(ξ) the
constant in (4.28)), set

Dϑ :=
{
v ∈ C(Ω) : ‖v‖

C(Ω)
< ϑ

}
. (6.8)

By virtue of Theorem 4.3(a), we observe that if ξ′ ∈ [ξ, ξ0 + 1] and uξ′ is a fixed
point of Kξ′ , then uξ′ ∈ Dϑ. As ξ is fixed, and ξ < ξ1 ≤ ξ0, we can suppose that
U ⊆ V%. Since Kξ0+1 does not have fixed points, this fact together with the above
arguments entail that

deg(I −Kξ, Dϑ, 0) = deg(I −Kξ0+1, Dϑ, 0) = 0. (6.9)

Consequently, (6.7) and (6.8) imply that

deg(I −Kξ, Dϑ − U, 0) = −1, (6.10)

which says that problem (1.2) admits a weak solution ũ ∈ Wp(Ω) \ U . This es-

tablishes the assertion (3). Finally, suppose that f ∈ C(Ω × R). For ξ < ξ0, let
uξ0 ∈ Wp(Ω) be the minimal weak solution of (1.2) with respect to ξ0. Then, uξ0 is
a weak supersolution of (1.2) corresponding to ξ. Since cξ ≤ uξ0 , by Theorem 5.2,

there is a weak solution uξ of (1.2) fulfilling cξ ≤ uξ ≤ uξ0 . As f ∈ C(Ω × R), we
can find a constant γ sufficiently small, such that

f(x, uξ0)− f(x, uξ0 + γ) + (ξ0 − ξ)φ(x) ≥ 0. (6.11)

Letting wξ0 := uξ0 + γ, one gets from (6.11) that

−∆pwξ0 +ΘΩwξ0 = f(x, uξ0 +γ)+tφ(x)+[f(x, uξ0)−f(x, uξ0 +γ)+(ξ0−ξ)φ(x)]

≥ f(x, uξ0 + γ) + tφ(x), (6.12)

which entails that wξ0 is a weak supersolution of (1.2) corresponding to t (for γ
small enough). Recalling that any c < cξ is a strict weak subsolution of (1.2), one
concludes that c < uξ < wξ0 . From here, one can proceed exactly as in the previous
case to achieve the same conclusion as in statement (3). Consequently, in this case,
ξ1 = ξ0, establishing (4) and completing the proof of the theorem.
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