In the last few years, computer-assisted diagnosis systems have obtained a growing interest from researchers thanks to the use of deep learning techniques. We propose a deep neural network based on a multi-input architecture that allows to use all the information available to physicians during the diagnosis. The results obtained show an interesting improvement in performance in terms of predictive skill compared to the results in the literature.
An application of deep learning to chest disease detection using images and clinical data / DI CIACCIO, Agostino; Crobu, Federica. - (2019), pp. 397-401. (Intervento presentato al convegno IES 2019 - Statistical evaluation sistems at 360°: techniques, technologies and new frontiers. tenutosi a Roma).
An application of deep learning to chest disease detection using images and clinical data
Agostino Di Ciaccio
Methodology
;Federica CrobuSoftware
2019
Abstract
In the last few years, computer-assisted diagnosis systems have obtained a growing interest from researchers thanks to the use of deep learning techniques. We propose a deep neural network based on a multi-input architecture that allows to use all the information available to physicians during the diagnosis. The results obtained show an interesting improvement in performance in terms of predictive skill compared to the results in the literature.File | Dimensione | Formato | |
---|---|---|---|
Crobu_application-of-deep_2019.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
29.25 kB
Formato
Adobe PDF
|
29.25 kB | Adobe PDF | |
Crobu_copertina_indice_application-of-deep_2019.pdf.pdf
accesso aperto
Tipologia:
Altro materiale allegato
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
249.58 kB
Formato
Adobe PDF
|
249.58 kB | Adobe PDF | |
Crobu_quarta_application-of-deep_2019.pdf
accesso aperto
Tipologia:
Altro materiale allegato
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
9.56 kB
Formato
Adobe PDF
|
9.56 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.