We prove existence and uniqueness of Radon measure-valued solutions of the Cauchy problem for a first order scalar hyperbolic conservation law in one space dimension, the initial data being a finite superposition of Dirac masses and the flux being Lipschitz continuous, bounded and sufficiently smooth. The novelty of the paper is the introduction of a compatibility condition which, combined with standard entropy conditions, guarantees uniqueness.
A uniqueness criterion for measure-valued solutions of scalar hyperbolic conservation laws / Bertsch, Michiel; Smarrazzo, Flavia; Terracina, Andrea; Tesei, Alberto. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1120-6330. - 30:1(2019), pp. 137-168. [10.4171/RLM/839]
A uniqueness criterion for measure-valued solutions of scalar hyperbolic conservation laws
Terracina, Andrea;Tesei, Alberto
2019
Abstract
We prove existence and uniqueness of Radon measure-valued solutions of the Cauchy problem for a first order scalar hyperbolic conservation law in one space dimension, the initial data being a finite superposition of Dirac masses and the flux being Lipschitz continuous, bounded and sufficiently smooth. The novelty of the paper is the introduction of a compatibility condition which, combined with standard entropy conditions, guarantees uniqueness.File | Dimensione | Formato | |
---|---|---|---|
Bertsch_A-uniqueness-criterion_2019.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
228.26 kB
Formato
Adobe PDF
|
228.26 kB | Adobe PDF | Contatta l'autore |
Bertsch_preprint_A-uniqueness-criterion_2019.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
342.57 kB
Formato
Adobe PDF
|
342.57 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.