We study the well-posedness of the Hamiltonian of a system of two anyons in the magnetic gauge. We identify all the possible quadratic forms realizing such an operator for noninteracting anyons and prove their closedness and boundedness from below. We then show that the corresponding self-adjoint operators give rise to a one-parameter family of extensions of the naive two-anyon Schrödinger operator. We finally extend the results in presence of a two-body radial interaction.

Hamiltonians for two-anyon systems / Correggi, Michele; Oddis, Luca. - In: RENDICONTI DI MATEMATICA E DELLE SUE APPLICAZIONI. - ISSN 1120-7183. - 39:2(2018), pp. 277-292.

Hamiltonians for two-anyon systems

Correggi, Michele;Oddis, Luca
2018

Abstract

We study the well-posedness of the Hamiltonian of a system of two anyons in the magnetic gauge. We identify all the possible quadratic forms realizing such an operator for noninteracting anyons and prove their closedness and boundedness from below. We then show that the corresponding self-adjoint operators give rise to a one-parameter family of extensions of the naive two-anyon Schrödinger operator. We finally extend the results in presence of a two-body radial interaction.
2018
Aharonov-Bohm potentials; Anyons; Fractional statistics; Cultural Studies; History
01 Pubblicazione su rivista::01a Articolo in rivista
Hamiltonians for two-anyon systems / Correggi, Michele; Oddis, Luca. - In: RENDICONTI DI MATEMATICA E DELLE SUE APPLICAZIONI. - ISSN 1120-7183. - 39:2(2018), pp. 277-292.
File allegati a questo prodotto
File Dimensione Formato  
Correggi_Hamiltonians_2018.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 360.76 kB
Formato Adobe PDF
360.76 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1273400
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact