We obtain the limiting distribution of the nodal area of random Gaussian Laplace eigenfunctions on $ mathbb{T}^3= mathbb{R}^3/ mathbb{Z}^3$ (three-dimensional ``arithmetic random waves"). We prove that, as the multiplicity of the eigenspace goes to infinity, the nodal area converges to a universal, non-Gaussian distribution. Universality follows from the equidistribution of lattice points on the sphere. Our arguments rely on the Wiener chaos expansion of the nodal area: we show that, analogous to the two-dimensional case addressed by Marinucci et al., [Geom. Funct. Anal. 26 (2016), pp. 926-960] the fluctuations are dominated by the fourth-order chaotic component. The proof builds upon recent results from Benatar and Maffiucci [Int. Math. Res. Not. IMRN (to appear)] that establish an upper bound for the number of nondegenerate correlations of lattice points on the sphere. We finally discuss higher-dimensional extensions of our result.
Nodal area distribution for arithmetic random waves / Cammarota, Valentina. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9947. - (2019), pp. 3539-3564. [10.1090/tran/7779]
Nodal area distribution for arithmetic random waves
Cammarota, Valentina
Primo
Membro del Collaboration Group
2019
Abstract
We obtain the limiting distribution of the nodal area of random Gaussian Laplace eigenfunctions on $ mathbb{T}^3= mathbb{R}^3/ mathbb{Z}^3$ (three-dimensional ``arithmetic random waves"). We prove that, as the multiplicity of the eigenspace goes to infinity, the nodal area converges to a universal, non-Gaussian distribution. Universality follows from the equidistribution of lattice points on the sphere. Our arguments rely on the Wiener chaos expansion of the nodal area: we show that, analogous to the two-dimensional case addressed by Marinucci et al., [Geom. Funct. Anal. 26 (2016), pp. 926-960] the fluctuations are dominated by the fourth-order chaotic component. The proof builds upon recent results from Benatar and Maffiucci [Int. Math. Res. Not. IMRN (to appear)] that establish an upper bound for the number of nondegenerate correlations of lattice points on the sphere. We finally discuss higher-dimensional extensions of our result.File | Dimensione | Formato | |
---|---|---|---|
Cammarota_nodal-area-distribution_2019.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
378.75 kB
Formato
Adobe PDF
|
378.75 kB | Adobe PDF | |
Cammarota_nodal-area-distribution_2019.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
340.05 kB
Formato
Adobe PDF
|
340.05 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.