This study aims to elucidate the processes underlying neuroprotection of kaempferol in models of rotenone-induced acute toxicity. We demonstrate that kaempferol, but not quercetin, myricetin or resveratrol, protects SH-SY5Y cells and primary neurons from rotenone toxicity, as a reduction of caspases cleavage and apoptotic nuclei are observed. Reactive oxygen species (ROS) levels and mitochondrial carbonyls decrease significantly. Mitochondrial network, transmembrane potential and oxygen consumption are also deeply preserved. We demonstrate that the main event responsible for the kaempferol-mediated antiapoptotic and antioxidant effects is the enhancement of mitochondrial turnover by autophagy. Indeed, fluorescence and electron microscopy analyses show an increase of the mitochondrial fission rate and mitochondria-containing autophagosomes. Moreover, the autophagosome-bound microtubule-associated protein light chain-3 (LC3-II) increases during kaempferol treatment and chemical/genetic inhibitors of autophagy abolish kaempferol protective effects. Autophagy affords protection also toward other mitochondrial toxins (1-methyl-4-phenyilpiridinium, paraquat) used to reproduce the typical features of Parkinson’s disease (PD), but is inefficient against apoptotic stimuli not directly affecting mitochondria (H2O2, 6-hydroxydopamine, staurosporine). Striatal glutamatergic response of rat brain slices is also preserved by kaempferol, suggesting a more general protection of kaempferol in Parkinson’s disease. Overall, the data provide further evidence for kaempferol to be identified as an autophagic enhancer with potential therapeutic capacity.

Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson's disease / Filomeni, G; Graziani, I; De Zio, D; Dini, L; Centonze, D; Rotilio, G; Ciriolo, Mr. - In: NEUROBIOLOGY OF AGING. - ISSN 0197-4580. - 33:(2012), pp. 767-785. [10.1016/j.neurobiolaging.2010.05.021]

Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson's disease

Dini L;
2012

Abstract

This study aims to elucidate the processes underlying neuroprotection of kaempferol in models of rotenone-induced acute toxicity. We demonstrate that kaempferol, but not quercetin, myricetin or resveratrol, protects SH-SY5Y cells and primary neurons from rotenone toxicity, as a reduction of caspases cleavage and apoptotic nuclei are observed. Reactive oxygen species (ROS) levels and mitochondrial carbonyls decrease significantly. Mitochondrial network, transmembrane potential and oxygen consumption are also deeply preserved. We demonstrate that the main event responsible for the kaempferol-mediated antiapoptotic and antioxidant effects is the enhancement of mitochondrial turnover by autophagy. Indeed, fluorescence and electron microscopy analyses show an increase of the mitochondrial fission rate and mitochondria-containing autophagosomes. Moreover, the autophagosome-bound microtubule-associated protein light chain-3 (LC3-II) increases during kaempferol treatment and chemical/genetic inhibitors of autophagy abolish kaempferol protective effects. Autophagy affords protection also toward other mitochondrial toxins (1-methyl-4-phenyilpiridinium, paraquat) used to reproduce the typical features of Parkinson’s disease (PD), but is inefficient against apoptotic stimuli not directly affecting mitochondria (H2O2, 6-hydroxydopamine, staurosporine). Striatal glutamatergic response of rat brain slices is also preserved by kaempferol, suggesting a more general protection of kaempferol in Parkinson’s disease. Overall, the data provide further evidence for kaempferol to be identified as an autophagic enhancer with potential therapeutic capacity.
2012
01 Pubblicazione su rivista::01a Articolo in rivista
Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson's disease / Filomeni, G; Graziani, I; De Zio, D; Dini, L; Centonze, D; Rotilio, G; Ciriolo, Mr. - In: NEUROBIOLOGY OF AGING. - ISSN 0197-4580. - 33:(2012), pp. 767-785. [10.1016/j.neurobiolaging.2010.05.021]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1265492
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 220
  • ???jsp.display-item.citation.isi??? 185
social impact