Detailed and accurate vehicle-oriented sensor data is considered fundamental for efficient vehicle-to-everything V2X communication applications, especially in the upcoming highly heterogeneous, brisk and agile 5G networking era. Information retrieval, transfer and manipulation in real-time offers a small margin for erratic behavior, regardless of its root cause. This paper presents a method for managing nonuniformities and uncertainties found on datasets, based on an elaborate Matrix Completion technique, with superior performance in three distinct cases of vehicle-related sensor data, collected under real driving conditions. Our approach appears capable of handling sensing and communication irregularities, minimizing at the same time the storage and transmission requirements of Multi-access Edge Computing applications.

Managing nonuniformities and uncertainties in vehicle-oriented sensor data over next generation networks / Nousiasl, Stavros; Tseliosl, Christos; Uitzasl, Dimitris; Orfila, Olivier; Jamson, Samantha; Mejuto, Pablo; Amaxilatis, Dimitrios; Akrivopoulos, Orestis; Chatzigiannakis, Ioannis; Lalosl, Aris S.; Moustakasl, Konstantinos. - (2018), pp. 272-277. (Intervento presentato al convegno 2018 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2018 tenutosi a Athens; Greece) [10.1109/PERCOMW.2018.8480342].

Managing nonuniformities and uncertainties in vehicle-oriented sensor data over next generation networks

Chatzigiannakis, Ioannis
;
2018

Abstract

Detailed and accurate vehicle-oriented sensor data is considered fundamental for efficient vehicle-to-everything V2X communication applications, especially in the upcoming highly heterogeneous, brisk and agile 5G networking era. Information retrieval, transfer and manipulation in real-time offers a small margin for erratic behavior, regardless of its root cause. This paper presents a method for managing nonuniformities and uncertainties found on datasets, based on an elaborate Matrix Completion technique, with superior performance in three distinct cases of vehicle-related sensor data, collected under real driving conditions. Our approach appears capable of handling sensing and communication irregularities, minimizing at the same time the storage and transmission requirements of Multi-access Edge Computing applications.
2018
2018 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2018
Laplacian Matrix Completion; MEC; Sensor Data; V2X; Computer Networks and Communications; Computer Science Applications1707 Computer Vision and Pattern Recognition; 1707
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Managing nonuniformities and uncertainties in vehicle-oriented sensor data over next generation networks / Nousiasl, Stavros; Tseliosl, Christos; Uitzasl, Dimitris; Orfila, Olivier; Jamson, Samantha; Mejuto, Pablo; Amaxilatis, Dimitrios; Akrivopoulos, Orestis; Chatzigiannakis, Ioannis; Lalosl, Aris S.; Moustakasl, Konstantinos. - (2018), pp. 272-277. (Intervento presentato al convegno 2018 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2018 tenutosi a Athens; Greece) [10.1109/PERCOMW.2018.8480342].
File allegati a questo prodotto
File Dimensione Formato  
Nousias_Postprint_Managing-nonuniformities_2018.pdf

accesso aperto

Note: https://ieeexplore.ieee.org/document/8480342
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 826.58 kB
Formato Adobe PDF
826.58 kB Adobe PDF
Nousias_Managing-nonuniformities_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 860.94 kB
Formato Adobe PDF
860.94 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1215258
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 1
social impact