In this paper we study a quasi-linear evolution equation with nonlinear dynamical boundary conditions in a three dimensional fractal cylindrical domain Q, whose lateral boundary is a fractal surface S. We consider suitable approximating pre-fractal problems in the corresponding pre-fractal varying domains. After proving existence and uniqueness results via standard semigroup approach, we prove density results for the domains of energy functionals defined on Q and S. Then we prove that the pre-fractal solutions converge in a suitable sense to the limit fractal one via the Mosco convergence of the energy functionals.
Convergence and density results for parabolic quasi-linear Venttsel’ problems in fractal domains / Creo, Simone; REGIS DURANTE, Valerio. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - 1:12(2019), pp. 65-90. [10.3934/dcdss.2019005]
Convergence and density results for parabolic quasi-linear Venttsel’ problems in fractal domains
CREO, SIMONE
;REGIS DURANTE, VALERIO
2019
Abstract
In this paper we study a quasi-linear evolution equation with nonlinear dynamical boundary conditions in a three dimensional fractal cylindrical domain Q, whose lateral boundary is a fractal surface S. We consider suitable approximating pre-fractal problems in the corresponding pre-fractal varying domains. After proving existence and uniqueness results via standard semigroup approach, we prove density results for the domains of energy functionals defined on Q and S. Then we prove that the pre-fractal solutions converge in a suitable sense to the limit fractal one via the Mosco convergence of the energy functionals.File | Dimensione | Formato | |
---|---|---|---|
Creo-RegisDurante.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
619.1 kB
Formato
Adobe PDF
|
619.1 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.