We consider the Cauchy problem (Equation Presented) where - is a network and H is a positive homogeneous Hamiltonian which may change from edge to edge. In the first part of the paper, we prove that the Hopf-Lax type formula gives the (unique) viscosity solution of the problem. In the latter part of the paper we study a ame propagation model in a network and an optimal strategy to block a fire breaking up in some part of a pipeline; some numerical simulations are provided.

A flame propagation model on a network with application to a blocking problem / Camilli, Fabio; Carlini, Elisabetta; Marchi, Claudio. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - 11:5(2018), pp. 825-843. [10.3934/dcdss.2018051]

A flame propagation model on a network with application to a blocking problem

Camilli, Fabio;Carlini, Elisabetta;Marchi, Claudio
2018

Abstract

We consider the Cauchy problem (Equation Presented) where - is a network and H is a positive homogeneous Hamiltonian which may change from edge to edge. In the first part of the paper, we prove that the Hopf-Lax type formula gives the (unique) viscosity solution of the problem. In the latter part of the paper we study a ame propagation model in a network and an optimal strategy to block a fire breaking up in some part of a pipeline; some numerical simulations are provided.
2018
approximation; evolutive Hamilton-Jacobi equation; Hopf-Lax formula; network; viscosity solution; analysis; discrete mathematics and combinatorics; applied mathematics
01 Pubblicazione su rivista::01a Articolo in rivista
A flame propagation model on a network with application to a blocking problem / Camilli, Fabio; Carlini, Elisabetta; Marchi, Claudio. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - 11:5(2018), pp. 825-843. [10.3934/dcdss.2018051]
File allegati a questo prodotto
File Dimensione Formato  
Camilli_Flame-propagation_2018.pdf

Open Access dal 02/11/2019

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 570.09 kB
Formato Adobe PDF
570.09 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1179234
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact