In this work, we consider the discretization of some nonlinear Fokker-Planck-Kolmogorov equations. The scheme we propose preserves the nonnegativity of the solution, conserves the mass, and, as the discretization parameters tend to zero, has limit measure-valued trajectories which are shown to solve the equation. The main assumptions to obtain a convergence result are that the coefficients are continuous and satisfy a suitable linear growth property with respect to the space variable. In particular, we obtain a new proof of existence of solutions for such equations. We apply our results to some nonlinear examples, including Mean Field Games systems and variations of the Hughes model for pedestrian dynamics.
On the discretization of some nonlinear Fokker-Planck-Kolmogorov equations and applications / Carlini, Elisabetta; Silva, Francisco J.. - In: SIAM JOURNAL ON NUMERICAL ANALYSIS. - ISSN 0036-1429. - 56:4(2018), pp. 2148-2177. [10.1137/17M1143022]
On the discretization of some nonlinear Fokker-Planck-Kolmogorov equations and applications
Carlini, Elisabetta;Silva, Francisco J.
2018
Abstract
In this work, we consider the discretization of some nonlinear Fokker-Planck-Kolmogorov equations. The scheme we propose preserves the nonnegativity of the solution, conserves the mass, and, as the discretization parameters tend to zero, has limit measure-valued trajectories which are shown to solve the equation. The main assumptions to obtain a convergence result are that the coefficients are continuous and satisfy a suitable linear growth property with respect to the space variable. In particular, we obtain a new proof of existence of solutions for such equations. We apply our results to some nonlinear examples, including Mean Field Games systems and variations of the Hughes model for pedestrian dynamics.File | Dimensione | Formato | |
---|---|---|---|
Carlini_On-the-discretization_2018.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.