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Abstract. In this work, we consider the discretization of some nonlinear Fokker--Planck--
Kolmogorov equations. The scheme we propose preserves the nonnegativity of the solution, conserves
the mass, and, as the discretization parameters tend to zero, has limit measure-valued trajectories
which are shown to solve the equation. The main assumptions to obtain a convergence result are
that the coefficients are continuous and satisfy a suitable linear growth property with respect to the
space variable. In particular, we obtain a new proof of existence of solutions for such equations. We
apply our results to some nonlinear examples, including Mean Field Games systems and variations
of the Hughes model for pedestrian dynamics.
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1. Introduction. In this article we consider the nonlinear Fokker--Planck--
Kolmogorov (FPK) equation

(FPK)
\partial tm - 1

2

\sum 
1\leq i,j\leq d

\partial 2xi,xj
(ai,j(m,x, t)m) + div (b(m,x, t)m) = 0,

m(0) = \=m0,

where, denoting by \scrP 1(\BbbR d) (respectively, \scrP 2(\BbbR d)) the space of probability measures
on \BbbR d with first (respectively, second) bounded moments, \=m0 \in \scrP 2(\BbbR d) and

b : C([0, T ];\scrP 1(\BbbR d))\times \BbbR d \times [0, T ] \rightarrow \BbbR d,

ai,j(m,x, t) :=
\sum r

k=1 \sigma ik(m,x, t)\sigma jk(m,x, t) \forall i, j = 1, . . . , d,

with \sigma i,j : C([0, T ];\scrP 1(\BbbR d))\times \BbbR d \times [0, T ] \rightarrow \BbbR \forall i = 1, . . . , d, j = 1, . . . , r.

Equation (FPK) is understood as an equation for measures in the sense that we
seek a solution m in the space C([0, T ];\scrP 1(\BbbR d)). Note that the coefficients b and ai,j
depend, a priori, on the values m(t) \in \scrP 1(\BbbR d) in the entire time interval [0, T ]. The
notion of weak solution to this equation, as well as the assumptions we impose on the
coefficients b and \sigma i,j , will be detailed in section 2.
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DISCRETIZATION OF SOME NONLINEAR FPK EQUATIONS 2149

Equation (FPK) has been studied mostly in the linear case, i.e., when b(m,x, t) =
b(x, t) and \sigma i,j(m,x, t) = \sigma i,j(x, t) for all i = 1, . . . , d and j = 1, . . . , r. This is due in
part to the close relation between solutions to (FPK) and solutions to the standard
stochastic differential equation (SDE)

(1.1) dX(t) = b(X(t), t)dt+ \sigma (X(t), t)dW (t), X(0) = x,

where \sigma is the matrix d \times r matrix whose (i, j) entry is \sigma i,j , W is an r-dimensional
Brownian motion, and x \in \BbbR d. Indeed, under some assumptions on b and \sigma i,j , it is
possible to show a correspondence of solutions to (FPK) and the time marginal laws of
weak solutions to (1.1) for almost every x \in \BbbR d with respect to (w.r.t.) \=m0 (see, e.g.,
[46, 32, 10] and the references therein). We refer the reader to [10] for a systematic
account of the theory of linear FPK equations and their probabilistic interpretation.
When b(m,x, t) = b(m(t), x, t) and \sigma i,j(m,x, t) = \sigma i,j(m(t), x, t) the associated FPK
equation is often called the McKean--Vlasov equation, and several results exist con-
cerning the well-posedness of the equation and its probabilistic interpretation (see,
e.g., [34, 51]). In the case of general nonlinear coefficients, the article [11] provides
an existence result when \sigma i,j \equiv 0 and in the articles [49, 50] sufficient conditions on
the coefficients defining (FPK) are given in order to ensure the existence of solutions
in the second order case. The uniqueness of solutions to (FPK) is a difficult matter.
The reader is referred to [46, 32] for the analysis in the linear case with rough co-
efficients, which borrow some ideas from [30, 4] dealing with the analogous problem
when \sigma i,j = 0, and to [47, 48, 12] for the nonlinear case.

Let us now comment on the numerical approximation of FPK equations. One
of the most popular numerical schemes in the linear case is the one introduced by
Chang and Cooper in [24]. An interesting feature of this finite difference scheme is
that the discrete solution preserves some intrinsic properties of the analytical one
such as nonnegativity and conservation of the initial mass (see, e.g., [53]). Starting
from this article, several improvements have been obtained in subsequent works; see,
for instance, [62, 31], where high order finite difference schemes have been proposed
also for the nonlinear case. Let us also mention [6], which deals with the application
of this scheme in the context of stochastic optimal control problems. Finally, finite
element approximations have also been discussed in [59].

In the 1970s, Kushner provided a systematic procedure to discretize the solution
of an SDE by a discrete time Markov chain in a countable state space. The method
the author proposes induces finite difference schemes for the associated Kolmogorov
backward and forward equations (see, e.g., [39, 40, 41]) and so a finite difference
discretization of (FPK) in the linear case. A proof of convergence of the scheme
by using probabilistic tools (weak convergence of probability measures) is provided
under the assumption that the coefficients of the SDE are bounded and uniformly
continuous. More recently, in the context of Mean Field Games (MFGs) systems
(see [45, 36]), Achdou and Capuzzo-Dolcetta introduced in [2] a semi-implicit finite
difference scheme for a linear FPK equation, which can be seen as a dual scheme
for the scheme associated to the dual equation, the linear Kolmogorov backward
equation. The scheme is obtained by computing the adjoint scheme of a monotone
and consistent discretization of the corresponding dual equation, i.e., the Kolmogorov
backward equation. Finally, in the first order case \sigma i,j = 0, we refer the reader to
the recent articles [28, 58] dealing with explicit upwind finite volume schemes for the
linear equation and to [42] for a similar scheme in the nonlinear and nonlocal case. Let
us underline that all the schemes mentioned above share some of the good features of
the Chang--Cooper scheme. Indeed, the approximated solutions are nonnegative and
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2150 ELISABETTA CARLINI AND FRANCISCO J. SILVA

conserve the initial mass. On the other hand, the main drawback of finite difference
and finite element schemes is that, when implemented in their explicit form, they have
to satisfy a CFL condition, which implies a strong restriction on the size of the time
steps.

A different class of methods in the linear case is the so-called path integration
method, introduced in [54]. These are explicit schemes where the marginal laws of
the solution of (1.1) are approximated via an Euler--Maruyama discretization of (1.1)
using Gaussian one step transition kernels. Recently, in [25], a convergence result for
the discrete time marginal laws in the L1 strong topology was proved in the framework
of a linear and uniformly elliptic FPK equation with unbounded coefficients.

Inspired by the papers [21, 22], dealing with the approximation of MFGs, our aim
in this article is to provide a discretization of the general FPK equation (FPK) and
to establish some convergence results. In the linear case, the scheme that we propose
can be seen as a particular Markov chain approximation of (1.1), and, similarly to
[2] in the context of finite difference discretizations, it can be obtained as the dual
scheme to the semi-Lagrangian (SL) scheme proposed in [14] for the associated linear
Kolmogorov backward equation. In this sense, our discretization is related to the
one proposed by Kushner in [39] but uses a different Markov chain approximation
that allows us to avoid the CFL condition and hence consider large time steps. For
this reason, we find that ``semi-Lagrangian scheme"" is a good appellation for our
discretization. More importantly, our scheme naturally adapts to the general (FPK)
equation, also preserves the positivity, conserves the total mass, and allows us to
obtain convergence results under rather general assumptions on b and \sigma i,j . Namely,
in Theorem 4.1 we prove that local Lipschitzianity and sublinear growth with respect
to the space variable x, uniformly w.r.t.m and t, are sufficient conditions to prove that
if the time step h and space step \rho tend to zero and satisfy that \rho 2/h\rightarrow 0, then every
limit point of the approximated solutions (there exists at least one) solves (FPK).
Under a suitable modification of the scheme, a similar convergence result is obtained
in Theorem 4.2 when the local Lipschitzianity property of b and \sigma i,j is relaxed to
merely continuity. Naturally, if the (FPK) equation admits a unique solution, then
we get the convergence of the whole sequence of approximated solutions. As a by-
product of this result, we obtain a new proof of existence of solutions to (FPK).

Note also that the initial condition \=m0 is rather general; we can consider, for
instance, singular measures (e.g., Dirac masses) as initial distributions. Moreover, as
we will see in section 5, we can also construct our scheme by using suitable approxi-
mations of the coefficients b and \sigma i,j in the case where such coefficients do not have
an explicit form and have to be approximated, and the convergence result remains
valid.

Let us point out that a different SL scheme for the (FPK) equation has been
proposed in [38] in the linear case. In that article, the advection part and the diffusion
reaction term are approximated separately by using two fractional steps. Furthermore,
in order to obtain a conservative scheme, the SL method applied to the advection
part needs to be adjusted. Since our scheme is derived directly from the probabilistic
interpretation of (FPK), it has the advantage that the advection and diffusion terms
can be treated together and the conservation of the mass is automatically verified
(see also the paper [13], where a conservative SL scheme for a parabolic equation in
divergence form is studied).

We study in this work the application of the scheme to two nonlinear models (see
[23] for some applications in the linear case). In the first one, we apply our scheme
to a particular nondegenerate FPK arising in MFGs. The resulting approximation is
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DISCRETIZATION OF SOME NONLINEAR FPK EQUATIONS 2151

similar to the one proposed in [21, 22], the main difference being that the nondegener-
acy of the system allows us to prove the convergence of the approximation in general
dimensions. In the second model, we propose a variation of the Hughes model for
pedestrian dynamics (see [37]), where, differently from MFGs, agents do not forecast
the evolution of the crowd in order to choose their optimal trajectories. We prove an
existence result for the associated FPK, as well as the convergence of the proposed
discretization.

The article is organized as follows. In section 2 we introduce the main notation
and recall some fundamental results about the space C([0, T ];\scrP 1(\BbbR d)), which are the
keys to establish the convergence results. Section 3 presents the scheme, first in the
linear case, for pedagogical reasons, and then in the general nonlinear case. In section
4 we prove our main results, concerning the convergence of the discretization. Finally,
in section 5 we consider the application of the scheme to the models described in the
previous paragraph.

2. Preliminaries. We denote by \scrP (\BbbR d) the space of probability measures on
\BbbR d. Given a Borel measurable function \Psi : \BbbR d \rightarrow \BbbR d\prime 

and \mu \in \scrP (\BbbR d), we denote
by \Psi \sharp \mu \in \scrP (\BbbR d\prime 

) the probability measure defined as \Psi \sharp \mu (A) := \mu (\Psi  - 1(A)) for all
A \in \scrB (\BbbR d\prime 

). Given p \in [1,\infty [, the set \scrP p(\BbbR d) denotes the subset of \scrP (\BbbR d) with
bounded p moments, i.e.,

\scrP p(\BbbR d) :=

\biggl\{ 
\mu \in \scrP (\BbbR d) ;

\int 
\BbbR d

| x| pd\mu (x) <\infty 
\biggr\} 
.

For every \mu 1, \mu 2 \in \scrP p(\BbbR d), define

dp(\mu 1, \mu 2) := inf

\Biggl\{ \biggl( \int 
\BbbR d\times \BbbR d

| x - y| pd\gamma (x, y)
\biggr) 1

p

; \gamma \in \scrP (\BbbR d \times \BbbR d), \pi 1\sharp \gamma = \mu 1, \pi 2\sharp \gamma = \mu 2

\Biggr\} 
,

where \pi i : \BbbR d \times \BbbR d \rightarrow \BbbR d (i = 1, 2) is defined as \pi i(x1, x2) = xi. It is well known
that dp is a distance in \scrP p(\BbbR d) (see, e.g., [61, Theorem 7.3]) and that

\bigl( 
\scrP p(\BbbR d), dp

\bigr) 
is

a separable complete metric space (see, e.g., [5, Proposition 7.1.5]). Moreover,
(2.1)

dp(\mu 1, \mu 2)
p \leq inf

\biggl\{ \int 
\BbbR d

| x - T (x)| p d\mu 1(x) ; T : \BbbR d \rightarrow \BbbR d is Borel measurable and T\sharp \mu 1 = \mu 2

\biggr\} 
with equality if \mu 1 has no atoms (see [3, Theorem 2.1]). Finally, let us mention an
important result that says that d1 corresponds to the Kantorovic--Rubinstein metric,
i.e.,

(2.2) d1(\mu 1, \mu 2) = sup

\biggl\{ \int 
\BbbR d

f(x)d(\mu 1  - \mu 2)(x) ; f \in Lip1(\BbbR d)

\biggr\} 
,

where Lip1(\BbbR d) denotes the set of Lipschitz functions defined in \BbbR d with Lipschitz
constant less than or equal to 1 (see, e.g., [61]).

Now, let \scrC \subseteq C([0, T ];\scrP 1(\BbbR d)), and suppose that there exists a modulus of con-
tinuity \=\omega : [0, T ] \rightarrow \BbbR , i.e., \=\omega \geq 0, \=\omega is continuous, and \=\omega (0) = 0, such that

(2.3) sup
\mu \in \scrC 

d1(\mu (t1), \mu (t2)) \leq \=\omega (| t1  - t2| ) \forall t1, t2 \in [0, T ].

Assume in addition that there exists C > 0 such that

(2.4) sup
t\in [0,T ]

\int 
\BbbR d

| x| 2d\mu (t)(x) \leq C \forall \mu \in \scrC .
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2152 ELISABETTA CARLINI AND FRANCISCO J. SILVA

Since the set
\bigl\{ 
\mu \in \scrP 1(\BbbR d) ;

\int 
\BbbR d | x| 2d\mu (x) \leq C

\bigr\} 
is compact in \scrP 1(\BbbR d) (see [5, Propo-

sition 7.1.5]), (2.4), (2.3), and the Arzel\'a--Ascoli theorem yield the following result.

Lemma 2.1. Under the above assumptions, \scrC is a relatively compact subset of
C([0, T ];\scrP 1(\BbbR d)).

For notational convenience, for \psi = b, \sigma i,j we set \psi [\mu ](x, t) := \psi (\mu , x, t). We say
that m \in C([0, T ];\scrP 1(\BbbR d)) solves (FPK) if for all t \in [0, T ] and \varphi \in C\infty 

0 (\BbbR d), the
space of C\infty -functions with compact support, we have
(2.5)\int 

\BbbR d \varphi (x)dm(t)(x) =
\int 
\BbbR d \varphi (x)d \=m0(x) +

\int t

0

\int 
\BbbR d [b[m](x, s) \cdot \nabla \varphi (x)] dm(s)(x)ds

+
\int t

0

\int 
\BbbR d

\Bigl[ 
1
2

\sum 
i,j ai,j [m](x, s)\partial 2xi,xj

\varphi (x)
\Bigr] 
dm(s)(x)ds.

The following assumption will be the principal one in the remainder of this paper.

(H) We will suppose that

(i) the maps b and \sigma are continuous;

(ii) there exists C > 0 such that
(2.6)
| b[\mu ](x, t)| + | \sigma [\mu ](x, t)| \leq C(1 + | x| ) \forall \mu \in C([0, T ];\scrP 1(\BbbR d)), x \in \BbbR d, t \in [0, T ].

The aim of this article is to study convergent numerical schemes for solutions to
(FPK) (if they exist). As can be guessed from the references [46, 32, 10] in the linear
case, i.e., when b and \sigma i,j do not depend on m, the existence of solutions to (FPK)
should be related to the existence of (weak) solutions to the ``extended"" McKean--
Vlasov equation

(2.7) dX(t) = b[m](X(t), t)dt+ \sigma [m](X(t), t)dW (t), X(0) = X0.

In (2.7), W is an r-dimensional Brownian motion defined on a probability space
(\Omega ,\scrF ,\BbbP ), m belongs to C([0, T ];\scrP 1(\BbbR d)) and satisfies m(t) = Law(X(t)) for all
t \in [0, T ], where we have denoted by Law(Y ) the law induced in \BbbR d by a d-valued
random variable Y , and X0 is a random variable, independent of W , and such that
Law(X0) = m0.

This observation, relating formally solutions of (FPK) and (2.7), leads us naturally
to studying the laws of discrete approximations of (2.7), for which existence is not
difficult to show, and then to studying their limit behavior. This strategy will be
followed in the next sections.

Remark 2.1. In this article we do not tackle the uniqueness of solutions to (FPK).
As can be seen in [46, 32, 10], in the linear case, the study of uniqueness is already
quite complicated in the absence of further assumptions on b and ai,j (see, e.g., [32,
Theorem 1.3]). We refer the reader to [47, 48, 12] for some recent and interesting
results in the general nonlinear case.

3. The fully discrete scheme. In this section we describe the scheme we pro-
pose and study its main properties. In order to introduce the main ideas we will start
by considering first the (FPK) equation with \sigma = 0 and b independent of m, i.e., the
first order linear FPK equation, also called continuity equation. Then, we will con-
sider the more general case (i.e., with \sigma not necessarily identically zero) but still with
coefficients b and \sigma independent of m. Finally, the scheme for the general (FPK) will
easily follow by freezing the m dependence of b and \sigma . We motivate the schemes by
assuming stronger assumptions on b and \sigma , which will imply uniqueness of solutions
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of the underlying SDEs, in order to take advantage of the semigroup properties of the
solutions and somehow guess a consistent approximation.

We assume first that \sigma \equiv 0 and that b does not depend on m, i.e., b[m](x, t) =
b(x, t). In addition to (H), assume that b is Lipschitz w.r.t. x, uniformly in t \in [0, T ].
For any 0 \leq s \leq t \leq T and x \in \BbbR d, we set \Phi (x, s, t) = X(t), where X is the unique
solution of

(3.1) \.X(t\prime ) = b(X(t\prime ), t\prime ) for t\prime \in ]s, T [, X(s) = x.

We know that \Phi defines a measurable function of (x, s, t) (if t \leq s we simply set
\Phi (x, s, t) = x). Then, m \in C([0, T ];\scrP 1(\BbbR d)) defined as

(3.2) m(t)(A) := \Phi (\cdot , 0, t)\sharp \=m0(A) \forall A \in \scrB (\BbbR d), t \in [0, T ],

is the unique solution of (FPK) (see, e.g., [5, Chapter 8] for a proof of this classical
result in a more general framework). We also have that for all t \in [0, T ] and h \in 
[0, T  - t]

(3.3) m(t+ h)(A) = \Phi (\cdot , t, t+ h)\sharp m(t)(A) \forall A \in \scrB (\BbbR d).

Given N \in \BbbN we set h := T/N and tk := kh (k = 0, . . . , N). Let us consider
the following explicit time discretization of (3.2), based on a standard explicit Euler
approximation of (3.1) and property (3.3):
(3.4)
m0 = \=m0, mk+1 := \Phi k\sharp mk, where \Phi k(x) := x+ hb(x, tk) \forall k = 0, . . . , N  - 1.

The sequences mk and \Phi k (k = 0, . . . , N) depend of course on h but we have omitted
this dependence in order to ease the reading. Let us now introduce some standard
notation that will be used for the space discretization. Let \rho > 0 be a given space
step, and consider a uniform space grid

\scrG \rho := \{ xi = i\rho ; i \in \BbbZ d\} .

Given a uniform Cartesian grid of \BbbR d, with vertices belonging to \scrG \rho , we consider a
\BbbQ 1 finite element basis (\beta i)i\in \BbbZ d ; i.e., for all i \in \BbbZ d, \beta i is a continuous function whose
restriction to each d-cube of the grid is a polynomial of degree less than or equal to 1
and satisfies that \beta i(xj) = 1 if i = j and \beta i(xj) = 0 otherwise. Moreover, the support
supp(\beta i) of \beta i is compact and

0 \leq \beta i \leq 1 \forall i \in \BbbZ d, and
\sum 
i\in \BbbZ d

\beta i(x) = 1 \forall x \in \BbbR d.

We look for a discretization of (3.4) taking the form

(3.5) mk =
\sum 
i\in \BbbZ d

mi,k\delta xi
\forall k = 0, . . . , N  - 1.

For all i \in \BbbZ d, let us define

Ei :=
\Bigl\{ 
x \in \BbbR d ; | x - xi| \infty \leq \rho 

2

\Bigr\} 
.

In section 4 we will let \rho \downarrow 0; thus, without loss of generality, we can assume that
\=m0(\partial Ei) = 0 for all i \in \BbbZ d. We define the weights mi,k of the Dirac masses in (3.5)
inductively as

(3.6) mi,0 = \=m0(Ei), mi,k+1 =
\sum 
j\in \BbbZ d

\beta i(\Phi j,k)mj,k \forall k = 0, . . . , N  - 1, i \in \BbbZ d,
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where

(3.7) \Phi i,k := \Phi k(xi) = xi + hb(xi, tk) \forall i \in \BbbZ d.

The sequences of weights in (3.6) depend on (\rho , h), but, for notational convenience,
we have omitted this dependence.

Remark 3.1. (i) In order to understand the intuitive meaning of (3.6), take d = 1,
\rho = 1, and \beta i(x) := max\{ 1  - | x  - xi| , 0\} for all i \in \BbbZ , x \in \BbbR . Then, the mass
mi,k+1, at xi at time tk+1, is obtained by first considering the set \scrA i,k of j's such that
\Phi j,k \in supp(\beta i) and then adding the massesmj,k (j \in \scrA i,k) weighted by 1 - | \Phi j,k - xi| .
For instance, if \Phi j,k = xi+1/2, then, at the discrete time k+1, half of the mass mj,k

will be in xi and the other half will be in xi+1.
(ii) In this deterministic setting if d = 1 it is easy to check that (3.6) coincides

with the scheme proposed in [55].

Remark 3.2. In the case of bounded space domains, the scheme (3.6) can be

extended to triangular meshes by considering a \BbbP 1 basis ( \^\beta i) (see, e.g., [56, Chapter
IV]) and modifying the sets Ei, which are used to construct the approximation of
the initial measure \=m0. The triangular mesh can be chosen as general as long as the
interpolation estimate (4.3) in the next section holds true. We refer the reader to [18]
for an example of this extension applied to a particular instance of (FPK).

Now, if \sigma [m](x, t) = \sigma (x, t) is not identically zero, we can consider the same type
of scheme, taking into account that the characteristics curves are stochastic. Indeed,
consider a filtered probability space (\Omega ,\scrF ,\BbbF ,\BbbP ), an r-dimensional Brownian motion
W defined in this probability space and adapted to the filtration \BbbF := \{ \scrF t\} t\in [0,T ].

Define \Phi : \Omega \times \BbbR d \times [0, T ] \times [0, T ] \rightarrow \BbbR d as \Phi (\omega , x, s, t) = x if t \leq s and, for s < t,
\Phi (\omega , x, s, t) = X(t, \omega ), where X solves

(3.8) dX(t\prime ) = b(X(t\prime ), t\prime )dt\prime + \sigma (X(t\prime ), t\prime )dW (t\prime ) for t\prime \in ]s, T [, X(s) = x.

Then, assuming that b and \sigma are Lipschitz with respect to x, uniformly in t \in [0, T ],
we have that (see, e.g., the classical monograph [60])
(3.9)

m(t)(A) :=

\int 
\Omega 

\Phi (\omega , \cdot , 0, t)\sharp \=m0(A)d\BbbP (\omega ) = \BbbE (\Phi (\cdot , 0, t)\sharp \=m0(A)) \forall A \in \scrB (\BbbR d), t \in [0, T ],

where, as usual, we have omitted the dependence of \Phi on \omega inside the expectation.
Analogously to (3.3), we have that
(3.10)

m(t+h)(A) =

\int 
\Omega 

\Phi (\omega , \cdot , t, t+h)\sharp m(t)(A)d\BbbP (\omega ) = \BbbE (\Phi (\cdot , t, t+ h)\sharp m(t)(A)) \forall A \in \scrB (\BbbR d).

Therefore, if we discretize the Brownian motion W by an r-dimensional random walk
with N time steps, the stochastic characteristic

X(t+ h) = X(t) +

\int t+h

t

b(X(t\prime ), t\prime )dt\prime +

\int t+h

t

\sigma (X(t\prime ), t\prime )dW (t\prime )

can be approximated with an explicit Euler scheme by

(3.11) X(t+ h) = X(t) + hb(X(t), t) +
\surd 
rh\sigma (X(t), t)Z,
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where Z is an r-valued random variable, independent of X(t), satisfying that for all
\ell = 1, . . . , r,
(3.12)

\BbbP (Z\ell = 1) = \BbbP (Z\ell =  - 1) =
1

2r
and \BbbP 

\left(  \bigcup 
1\leq \ell 1<\ell 2\leq r

\{ Z\ell 1 \not = 0\} \cap \{ Z\ell 2 \not = 0\} 

\right)  = 0.

Relations (3.11)--(3.12) motivate the following extensions of \Phi i,k, defined in (3.7):
(3.13)

\Phi \ell ,+
i,k := xi + hb(xi, tk) +

\surd 
rh\sigma \ell (xi, tk) \forall i \in \BbbZ d, k = 0, . . . , N  - 1, \ell = 1, . . . , r,

\Phi \ell , - 
i,k := xi + hb(xi, tk) - 

\surd 
rh\sigma \ell (xi, tk) \forall i \in \BbbZ d, k = 0, . . . , N  - 1, \ell = 1, . . . , r.

Inspired by (3.6), relation (3.10) induces the following explicit scheme:
(3.14)

mi,0 := \=m0(Ei) \forall i \in \BbbZ d,

mi,k+1 := 1
2r

r\sum 
\ell =1

\sum 
j\in \BbbZ d

\Bigl[ 
\beta i(\Phi 

\ell ,+
j,k ) + \beta i(\Phi 

\ell , - 
j,k )

\Bigr] 
mj,k \forall i \in \BbbZ d, k = 0, . . . , N  - 1.

Remark 3.3. Note that the previous scheme is conservative. Indeed, for all k =
0, . . . , N  - 1,

\sum 
i\in \BbbZ d

mi,k+1 =
\sum 
j\in \BbbZ d

mj,k

2r

r\sum 
\ell =1

\sum 
i\in \BbbZ d

\Bigl[ 
\beta i(\Phi 

\ell ,+
j,k ) + \beta i(\Phi 

\ell , - 
j,k )

\Bigr] 
=
\sum 
i\in \BbbZ d

mi,k,

and so
\sum 

i\in \BbbZ d mi,k+1 =
\sum 

i\in \BbbZ d mi,0 = 1.

Markov chain interpretation. Note that (3.14) can be interpreted in terms of a
discrete time Markov chain in a countable state space. Indeed, given the initial law
m\cdot ,0 on \scrG \rho , consider the nonhomogeneous Markov chain \{ Xk ; k = 0, . . . , N\} with
values in \scrG \rho defined by the previous initial law and the transition probabilities

p
(k)
ji := \BbbP 

\bigl( 
Xk+1 = xi

\bigm| \bigm| Xk = xj

\bigr) 
:=

1

2r

r\sum 
\ell =1

\Bigl[ 
\beta i(\Phi 

\ell ,+
j,k ) + \beta i(\Phi 

\ell , - 
j,k )

\Bigr] 
\forall i, j \in \BbbZ d, k = 0, . . . , N - 1.

Then, (3.14) gives the distribution of Xk for all k = 0, . . . , N .

Remark 3.4. (i) Note that if \sigma \equiv 0, we recover the scheme (3.6).
(ii) As we will see in section 4, the Markov chain (Xk)

N
k=0 is a consistent approx-

imation, in the sense of Kushner (see [40]), of the diffusion in (3.8) with s = 0 and
with Law(X0) = \=m0. It is easily seen that, as a function of \=m0, scheme (3.14) can
be formally understood as the dual scheme associated to the SL scheme (see [52]) for
the Kolmogorov backward equation

\partial tu - 1
2

\sum 
1\leq i,j\leq d

ai,j\partial 
2
xi,xj

u+ b \cdot \nabla u = 0,

u(\cdot , T ) = g(\cdot ),

as a function of g \in Cb(\BbbR d) (where Cb(\BbbR d) is the space of bounded continuous func-
tions in \BbbR d).

(iii) In [19, section 3.1], it is shown that scheme (3.14) can also be constructed
from the weak formulation of (FPK) (when b and \sigma are independent of m).
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In the general nonlinear case, as we have explained at the end of section 2, for-
mally, m solves (FPK) iff for all t \in [0, T ], we have that m(t) = Law(X(t)), where
X solves (2.7) (assuming that (2.7) admits a solution in a weak sense). On the other
hand, even in the particular case of regular coefficients and local in time dependence
onm, i.e., b[m](x, t) = b(m(t), x, t) and \sigma [m](x, t) = \sigma (m(t), x, t), with b and \sigma regular
w.r.t. x, X is not a Markov process. Nevertheless, loosely speaking again, X solves
(2.7) iff Law(X(\cdot )) \in C([0, T ];\scrP 1(\BbbR d)) is a fixed point of the application

(3.15) \mu \in C([0, T ];\scrP 1(\BbbR d)) \mapsto \rightarrow \scrF (\mu ) := Law(X[\mu ](\cdot )) \in C([0, T ];\scrP 1(\BbbR d)),

where X[\mu ](\cdot ) solves

(3.16) dX(t) = b[\mu ](X(t), t)dt+ \sigma [\mu ](X(t), t)dW (t) for t \in ]0, T [, X(0) = X0.

Since for every fixed \mu , X[\mu ] defines a Markov diffusion, we can apply (3.14) to
approximate its law.

Even if the previous discussion is purely formal, it provides the idea of how to
construct a natural discretization of (FPK) by considering a discrete version of the
fixed-point problem (3.15), which will be constructed using (3.14). However, since
b[\cdot ](x, t) and \sigma [\cdot ](x, t) act on C([0, T ];\scrP 1(\BbbR d)), given \rho and h we first need to map
elements of the set

\scrS \rho ,h :=

\biggl\{ 
(\mu i,k)i\in \BbbZ d, k=0,...,N ; \mu i,k \geq 0 \forall i \in \BbbZ d,

\sum 
i\in \BbbZ d

\mu i,k = 1,
\sum 
i\in \BbbZ d

| xi| \mu i,k < \infty \forall k = 0, . . . , N

\biggr\} 

to elements of C([0, T ];\scrP 1(\BbbR d)). This can be naturally done by using time interpo-
lation. Given \mu \in \scrS \rho ,h, we still denote by \mu the element of C([0, T ];\scrP 1(\BbbR d)) defined
by

(3.17) \mu (t) :=

\biggl( 
t - tk
h

\biggr) \sum 
i\in \BbbZ d

\mu i,k+1\delta xi +

\biggl( 
tk+1  - t

h

\biggr) \sum 
i\in \BbbZ d

\mu i,k\delta xi if t \in [tk, tk+1[,

for all k = 0, . . . , N  - 1. Using this notation, define

(3.18) \mu \in \scrS \rho ,h \mapsto \rightarrow \scrF \rho ,h(\mu ) := (Law(Xk[\mu ]))k=0,...,N \in \scrS \rho ,h,

where we compute \BbbP (Xk[\mu ] = xi) := mi,k[\mu ] recursively with (3.14) with \Phi \ell ,+
j,k and

\Phi \ell , - 
j,k replaced by

(3.19)

\Phi \ell ,+
i,k [\mu ] := xi+hb[\mu ](xi, tk)+

\surd 
rh\sigma \ell [\mu ](xi, tk), \Phi \ell , - 

i,k [\mu ] := xi+hb[\mu ](xi, tk) - 
\surd 
rh\sigma \ell [\mu ](xi, tk),

respectively. For \mu \in \scrS \rho ,h let us set \nu k[\mu ] :=
\bigl( 
\scrF \rho ,h(\mu )

\bigr) 
k
(k = 0, . . . , N). By definition

of the scheme, using that \=m0 \in \scrP 2(\BbbR d) and that \=m0(\partial Ei) = 0, we have

\int 
\BbbR d

| x| 2d\nu 0[\mu ](x) =
\sum 
i\in \BbbZ d

| xi| 2 \=m0(Ei)

=
\sum 
i\in \BbbZ d

\int 
Ei

| x - (x - xi)| 2d \=m0(x)

\leq 2

\int 
\BbbR d

| x| 2d \=m0(x) + d\rho 2/2 < +\infty .
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Moreover, arguing exactly as in the proof of Proposition 4.1 in the next section, under
(H)(ii) we obtain the existence of c > 0, independent of \mu , such that

(3.20)

\int 
\BbbR d

| x| 2d\nu k[\mu ](x) =
\sum 
i\in \BbbZ d

| xi| 2\nu i,k[\mu ] \leq c \forall k = 0, . . . , N, \forall \mu \in \scrS \rho ,h.

In particular, \scrF \rho ,h is well defined. The discretization of (FPK) that we propose is

(3.21) find m \in \scrS \rho ,h such that m = \scrF \rho ,h(m),

or equivalently, find m \in \scrS \rho ,h such that
(3.22)
mi,0 = \=m0(Ei) \forall i \in \BbbZ d,

mi,k+1 = 1
2r

r\sum 
\ell =1

\sum 
j\in \BbbZ d

\Bigl[ 
\beta i(\Phi 

\ell ,+
j,k [m]) + \beta i(\Phi 

\ell , - 
j,k [m])

\Bigr] 
mj,k \forall i \in \BbbZ d, k = 0, . . . , N  - 1.

Now, let us prove the existence of solutions of (3.21). In the following proof we identify
\scrS \rho ,h with a subset of \scrP 1(\BbbR d)N+1 by setting for all \mu \in \scrS \rho ,h

(3.23) \mu k:=
\sum 
i\in \BbbZ d

\mu i,k\delta xi
\forall k = 0, . . . , N.

Proposition 3.1. There exists at least one solution m\rho ,h \in \scrS \rho ,h of (3.21).

Proof. As before, for \mu \in \scrS \rho ,h denote by \nu k[\mu ] :=
\bigl( 
\scrF \rho ,h(\mu )

\bigr) 
k
(k = 0, . . . , N). Let

c > 0 be such that (3.20) holds. Then, defining

\scrS \rho ,h
c :=

\left\{   \mu \in \scrS \rho ,h ;
\sum 
i\in \BbbZ d

| xi| 2\mu i,k \leq c \forall k = 0, . . . , N

\right\}   ,

we have that \scrS \rho ,h
c is convex and \scrF \rho ,h(\scrS \rho ,h

c ) \subseteq \scrS \rho ,h
c . Moreover, by [5, Proposition 7.1.5

and Proposition 5.1.8], Fatou's lemma, and the identification (3.23), we have that \scrS \rho ,h
c

is a compact subset of \scrP 1(\BbbR d)N+1. Finally, if \mu n \in \scrS \rho ,h converge to \mu \in \scrS \rho ,h, seen as
elements of \scrP 1(\BbbR d)N+1, then, using the extension (3.17), assumption (H)(i) implies

that \Phi \ell ,+
j,k [\mu n] and \Phi \ell , - 

j,k [\mu n] converge to \Phi 
\ell ,+
j,k [\mu ] and \Phi \ell , - 

j,k [\mu ], respectively, which implies

the continuity of \scrF \rho ,h. Since the topology of \scrP 1(\BbbR d) is the restriction to \scrP 1(\BbbR d) of the
topology induced by the modified Kantorovic--Rubinstein norm on the linear space of
all bounded Borel measures on \BbbR d with respect to which all the Lipschitz functions
are integrable (see the discussion before Proposition 1.1.4 in [9]), the existence of a
solution of (3.21) follows from Schauder's fixed-point theorem.

The computation in Remark 3.3 applies in the nonlinear case, and so the scheme
is conservative.

Remark 3.5 (explicit and implicit schemes). Note that if for all t \in [0, T ], b[m](x, t)

= \^b(m(\cdot \wedge t), x, t) and \sigma [m](x, t) = \^\sigma (m(\cdot \wedge t), x, t) for some functions \^b and \^\sigma defined in
C([0, T ];\scrP 1(\BbbR d))\times \BbbR d\times [0, T ], then (3.19) implies that the scheme (3.22) is explicit in
the time steps, and the existence of solution, as well as the uniqueness, of the scheme
is straightforward. Notice that the explicit character of the scheme is a consequence
of (3.19). If, instead, an implicit discretization of the underlying ODE is considered,
then the scheme (3.22) would become implicit also in this case.
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In the general case, i.e., when b[m](x, t) and \sigma [m](x, t) depend on m(s) for some
s \in (t, T ], the scheme is implicit in the time steps and, as we have seen in the proof
of the previous proposition, the existence of solutions is a consequence of the Shauder
fixed-point theorem. The latter situation is the one we face when we consider MFGs,
as we will see in section 5.1. In the implicit cases, the uniqueness of solutions is
generally not true and its fulfilment depends on the problem at hand.

4. Convergence analysis. In this section we prove our main results concerning
the convergence of solutions of (3.22) to solutions of (FPK). In our first main result
in Theorem 4.1, we prove the desired convergence result under an additional local
Lipschitz assumption on b and \sigma , with respect to the space variable, and suitable
conditions on the time and space steps. In Theorem 4.2, we consider a variation of the
scheme in section 3, with regularized coefficients, and we prove a similar convergence
result by assuming only (H) and some conditions on the discretization parameters.

Let us first introduce and recall some classical properties of the linear interpolation
operator that we consider (see, e.g., [26, 57] for further details). Let B(\scrG \rho ) be the
space of bounded functions on \scrG \rho and for f \in B(\scrG \rho ) set fi := f(xi). We consider the
following linear interpolation operator:

(4.1) I[f ](\cdot ) :=
\sum 
i\in \BbbZ d

fi\beta i(\cdot ) for f \in B(\scrG \rho ).

Given \phi \in Cb(\BbbR d), let us define \^\phi \in B(\scrG \rho ) by \^\phi i := \phi (xi) for all i \in \BbbZ d. Suppose that
\phi : \BbbR d \rightarrow \BbbR is Lipschitz with constant L. Then,

(4.2) I[ \^\phi ] is Lipschitz with constant
\surd 
dL and sup

x\in \BbbR d

| I[ \^\phi ](x) - \phi (x)| = c0\rho 

for some c0 > 0. On the other hand, if \phi \in \scrC 2(\BbbR d), with bounded second derivatives,
then there exists c1 > 0 such that

(4.3) sup
x\in \BbbR d

| I[ \^\phi ](x) - \phi (x)| = c1\rho 
2.

Now, let \{ Nn\} n\in \BbbN be a sequence in \BbbN such that Nn \rightarrow \infty as n \rightarrow \infty and set hn :=
T/Nn. Given a sequence of space steps \rho n, such that \rho n \rightarrow 0 as n \rightarrow \infty , we want to
study the limit behavior of the extensions to C([0, T ];\scrP 1(\BbbR d)), defined in (3.17), of
sequences of solutions mn := m\rho n,hn \in \scrS \rho n,hn of (3.21), with \rho = \rho n and h = hn (by
Proposition 3.1 we know that (3.21) admits at least one solution).

First note that by considering the transport plan T (x) = xi if x \in Ei, and
arbitrarily defined in \partial Ei (because \=m0(\partial Ei) = 0), we have that T\sharp \=m0 = mn(0).
Thus, inequality (2.1) with p = 1 yields

(4.4) d1 ( \=m0,m
n(0)) \leq 

\int 
\BbbR d

| x - T (x)| d \=m0(x) =
\sum 
i\in \BbbZ d

\int 
Ei

| x - xi| d \=m0(x) \leq 
\surd 
d\rho n/2,

which implies that mn(0) \rightarrow \=m0 in \scrP 1(\BbbR d) as n \rightarrow \infty . We prove in this section that
under suitable conditions over \rho n and hn the set \scrC := \{ mn ; n \in \BbbN \} satisfies (2.3)
and (2.4). Therefore, Lemma 2.1 will imply that mn has at least one limit point
m \in C([0, T ];\scrP 1(\BbbR d)). In the proof of (2.3) and (2.4) we will need some properties of
the Markov chain Xn, defined by the transition probabilities

pn,kji := \BbbP 
\bigl( 
Xn

k+1 = xi
\bigm| \bigm| Xn

k = xj
\bigr) 
:=

1

2r

r\sum 
\ell =1

\Bigl[ 
\beta i(\Phi 

\ell ,+
j,k [m

n]) + \beta i(\Phi 
\ell , - 
j,k [m

n])
\Bigr] 

\forall i, j \in \BbbZ d,
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and k = 0, . . . , Nn - 1. Note that (3.22) implies that the marginal distributions of this
chain are given by mn. Moreover, it is easy to check that (4.2) (resp., (4.3)) implies
that if \phi : \BbbR d \rightarrow \BbbR is Lipschitz (resp., C2 with bounded second derivatives), then
(4.5)

\BbbE 
\bigl( 
\phi (Xn

k+1)
\bigm| \bigm| Xn

k = xi
\bigr) 
= 1

2r

\sum r
\ell =1

\Bigl[ 
I[ \^\phi ](\Phi \ell ,+

i,k [mn]) + I[ \^\phi ](\Phi \ell , - 
i,k [mn])

\Bigr] 
= 1

2r

\sum r
\ell =1

\Bigl[ 
\phi (\Phi \ell ,+

i,k [mn]) + \phi (\Phi \ell , - 
i,k [mn])

\Bigr] 
+O(\rho n),

(resp.) \BbbE 
\bigl( 
\phi (Xn

k+1)
\bigm| \bigm| Xn

k = xi
\bigr) 
= 1

2r

\sum r
\ell =1

\Bigl[ 
\phi (\Phi \ell ,+

i,k [mn]) + \phi (\Phi \ell , - 
i,k [mn])

\Bigr] 
+O(\rho 2n).

Proposition 4.1. Suppose that \rho 2n = O(hn). Then, there exists a constant c > 0
such that

(4.6) sup
n\in \BbbN 

sup
t\in [0,T ]

\int 
\BbbR d

| x| 2dmn(t) \leq c.

Proof. By (3.17), it is enough to show that there exists c > 0, independent of n,
such that

(4.7) sup
k=0,...,Nn

\int 
\BbbR d

| x| 2dmn(tk) \leq c.

For notational convenience we will omit the superscript n. By definition,\int 
\BbbR d

| x| 2dm(tk+1)(x) =
\sum 
i\in \BbbZ d

| xi| 2mi,k+1 = \BbbE (| Xk+1| 2),

from which, using (4.5) and (H)(ii),

\BbbE (| Xk+1| 2) =
\sum 

i\in \BbbZ d \BbbE 
\bigl( 
| Xk+1| 2

\bigm| \bigm| Xk = xi

\bigr) 
mi,k,

= 1
2r

\sum r
\ell =1

\sum 
i\in \BbbZ d

\Bigl[ \bigm| \bigm| \Phi \ell ,+
i,k [m]

\bigm| \bigm| 2 + \bigm| \bigm| \Phi \ell , - 
i,k [m]

\bigm| \bigm| 2\Bigr] mi,k +O(\rho 2n),

= \BbbE 
\Bigl[ \bigm| \bigm| Xk + hnb[m](Xk, tk) +

\surd 
rhn\sigma [m](Xk, tk)Zk

\bigm| \bigm| 2\Bigr] +O(\rho 2n),

= \BbbE 
\bigl[ 
| Xk| 2 + h2

n| b[m](Xk, tk)| 2 + rhn

\sum r
\ell =1 | \sigma \ell [m](Xk, tk)| 2 + 2hnXk \cdot b[m](Xk, tk)

\bigr] 
+O(\rho 2n),

\leq (1 + Chn)\BbbE (| Xk| 2) + Chn +O(\rho 2n),

where Zk is an r-valued random variable, independent of Xk, satisfying (3.12) and C
is independent of n. Iterating, we get\int 

\BbbR d | x| 2dm(tk+1)(x) \leq (1 + Chn)
T
hn \BbbE (| X0| 2) + (Chn +O(\rho 2n))

\sum N
k=0(1 + Chn)

k

\leq eCT\BbbE (| X0| 2) + T
hn

\bigl[ 
Chn +O(\rho 2n)

\bigr] 
eCT

\leq eCT\BbbE (| X0| 2) +
\Bigl( 
CT +O

\Bigl( 
\rho 2
n

hn

\Bigr) \Bigr) 
eCT ,

from which the result follows.

Now, we prove a consistency property of the chainXn in the spirit of Kushner [40].
For all 0 \leq k \leq Nn - 1 let us define \delta kX

n := Xn
k+1 - Xn

k , Y
n
k := \delta kX

n - \BbbE (\delta kX
n| Xn

k ).

Lemma 4.1. For all k = 0, . . . , Nn  - 1 we have that

\BbbE (\delta kXn| Xn
k ) = hnb[m

n](Xn
k , tk),

\BbbE (| Y n
k | 2| Xn

k ) = hn
\sum r

\ell =1 | \sigma \ell [mn](Xn
k , tk)| 2 +O(\rho 2n).
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2160 ELISABETTA CARLINI AND FRANCISCO J. SILVA

Proof. By definition of pn,kik,ik+1
we have

\BbbE (\delta kXn| Xn
k = xik) =

\sum 
ik+1

\bigl( 
xik+1

 - xik
\bigr) 
pn,kik,ik+1

= 1
2r

\sum r
\ell =1

\Bigl( 
I[id - xik ](\Phi 

\ell ,+
ik,k

[mn]) + I[id - xik ](\Phi 
\ell , - 
ik,k

[mn])
\Bigr) 

= hnb[m
n](xik , tk),

where id(x) = x and the last equality follows from the fact that I[id - xik ](y) = y - xik
for all y \in \BbbR d. Analogously,

\BbbE (| Y n
k | 2| Xn

k = xik) =
\sum 
ik+1

\bigl[ 
xik+1

 - xik  - \BbbE (\delta kXn| Xn
k = xik)

\bigr] 2
pn,kik,ik+1

.

Using (4.3) and the definition of pn,kik,ik+1
again we get that

\BbbE (| Y n
k | 2| Xk = xik) = hn

r\sum 
\ell =1

| \sigma \ell [mn](xik , tk)| 2 +O(\rho 2n),

from which the result follows.

Now, we prove that \scrC := \{ mn ; n \in \BbbN \} satisfies (2.3).

Proposition 4.2. Suppose that \rho 2n = O(hn). Then, there exists a constant C > 0
such that

(4.8) sup
n\in \BbbN 

d2(m
n(t),mn(s)) \leq C| t - s| 

1
2 \forall t, s \in [0, T ].

In particular, since d1 \leq d2, we have that \scrC satisfies (2.3).

Proof. The proof is divided into two steps.
Step 1. We first show that for given Nn there exists a constant C, independent

of n, such that

(4.9) d2(m
n(tk),m

n(t\prime k)) \leq C
\sqrt{} 
| k  - k\prime | hn \forall k, k\prime = 0, . . . , Nn.

We assume, without loss of generality, that k\prime = 0. For notational convenience, we
omit the superscript n on the sequences Xn

k , \delta kX
n, and Y n

k . By the definition of d2
we have

(4.10) d2(m
n(tk),m

n
0 ) \leq 

\bigl[ 
\BbbE (| Xk  - X0| 2)

\bigr] 1
2 .

We have that
(4.11)

\BbbE 
\bigl( 
| Xk  - X0| 2

\bigr) 
= \BbbE 

\bigm| \bigm| \bigm| \bigm| \bigm| 
k - 1\sum 
p=0

(Yp + \BbbE (\delta pX| Xp))

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

\leq 2\BbbE 

\bigm| \bigm| \bigm| \bigm| \bigm| 
k - 1\sum 
p=0

Yp

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

+ 2\BbbE 

\bigm| \bigm| \bigm| \bigm| \bigm| 
k - 1\sum 
p=0

\BbbE (\delta pX| Xp)

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

.

Now, for 0 \leq r < l \leq k  - 1 conditioning on \scrF l := \sigma (X0, . . . , Xl) and using that, by
the Markov property, \BbbE (\delta lX| \scrF l) = \BbbE (\delta lX| Xl) we get

\BbbE (Yl \cdot Yr) = \BbbE [(\delta lX  - \BbbE (\delta lX| Xl)) \cdot Yr] = \BbbE (\BbbE 
\bigl[ 
(\delta lX  - \BbbE (\delta lX| Xl))

\bigm| \bigm| \scrF l

\bigr] 
\cdot Yr) = 0,
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DISCRETIZATION OF SOME NONLINEAR FPK EQUATIONS 2161

and so, by Lemma 4.1,

(4.12)

\BbbE 
\bigm| \bigm| \bigm| \sum k - 1

p=0 Yp

\bigm| \bigm| \bigm| 2 =
\sum k - 1

p=0 \BbbE (\BbbE (| Yp| 2| Xp))

= hn
\sum k - 1

p=0

\sum r
\ell =1 \BbbE (| \sigma \ell [mn](Xp, tp)| 2) +O

\bigl( 
k\rho 2n

\bigr) 
\leq Chnk

\bigl( 
1 + supp=0,...,N \BbbE | Xp| 2

\bigr) 
+O

\bigl( 
k\rho 2n

\bigr) 
.

On the other hand, using Lemma 4.1 again,\bigm| \bigm| \bigm| \bigm| \bigm| 
k - 1\sum 
p=0

\BbbE (\delta pX| Xp)

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

\leq Ch2nk

k - 1\sum 
p=0

(1 + | Xp| 2),

and so

(4.13) \BbbE 

\bigm| \bigm| \bigm| \bigm| \bigm| 
k - 1\sum 
p=0

\BbbE (\delta pX| Xp)

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

\leq Ch2nk
2

\biggl( 
1 + sup

p=0,...,N
\BbbE | Xp| 2

\biggr) 
.

By Proposition 4.1, (4.12), (4.13), (4.11), and our assumption \rho 2n = O(hn), we get the
existence of C > 0 such that (4.9) holds true.

Step 2: Proof of (4.8). Let 0 \leq s < t \leq T and k\prime , k such that s \in [tk\prime , tk\prime +1[ and
t \in [tk, tk+1[. Then, by the triangular inequality
(4.14)
d2(m

n(t),mn(s)) \leq d2(m
n(t),mn(tk))+d2(m

n(tk),m
n(tk\prime +1))+d2(m

n(tk\prime +1),m
n(s)).

By the dual representation of d22(\cdot , \cdot ) (see [61, Theorem 1.3]), this function is convex
in \scrP 2(\BbbR d)\times \scrP 2(\BbbR d). Thus, relations (3.17) and (4.9) imply that

d22(m
n(t),mn(tk)) \leq 

\biggl( 
t - tk
hn

\biggr) 
d22(m

n(tk+1),m
n(tk)) \leq C2(t - tk),

from which

(4.15) d2(m
n(t),mn(tk)) \leq C(t - tk)

1
2 .

Analogously,

(4.16) d2(m
n(tk\prime +1),m

n(s)) \leq C(tk\prime +1  - s)
1
2 .

Relations (4.14), (4.15), (4.16), and the Cauchy--Schwarz inequality imply the exis-
tence of C > 0, independent of n, such that

d2(m
n(t),mn(s)) \leq C| t - s| 

1
2 .

Relation (4.8) follows.

For notational convenience, for all \varphi \in C\infty 
0 (\BbbR d) let us set

Lb,\sigma ,\varphi [\mu ](x, t) :=
1
2

\sum 
i,j

ai,j [\mu ](x, t)\partial 
2
xi,xj

\varphi (x) + b[\mu ](x, t) \cdot \nabla \varphi (x)(4.17)

\forall (\mu , x, t) \in C([0, T ];\scrP 1(\BbbR d))\times \BbbR d \times [0, T ].
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2162 ELISABETTA CARLINI AND FRANCISCO J. SILVA

We have now all the elements to prove our main convergence results. We consider
first the case where, in addition to (H), the coefficients satisfy the following local
Lipschitz property.

(Lip) For any \mu \in C([0, T ];\scrP 1(\BbbR d)) and a compact set K \subseteq \BbbR d, there exists a
constant C = C(\mu ,K) > 0 such that
(4.18)
| b[\mu ](y, t) - b[\mu ](x, t)| + | \sigma [\mu ](y, t) - \sigma [\mu ](x, t)| \leq C| y  - x| \forall x, y \in K, t \in [0, T ].

The case of more general coefficients satisfying only (H) will be treated just after.

Theorem 4.1. Assume (H)-(Lip) and that \rho 2n = o(hn). Then, every limit point
m \in C([0, T ];\scrP 1(\BbbR d)) of mn (there exists at least one) solves (FPK). In particular,
(FKP) admits at least one solution.

Proof. By Propositions 4.1 and 4.2 and Lemma 2.1, with \scrC = \{ mn ; n \in \BbbN \} , the
sequence mn has at least one limit point m. We use the same superscript n to index
a subsequence mn converging to m in C([0, T ];\scrP 1(\BbbR d)) and we need to show that
m satisfies (2.5). Let t \in ]0, T ] and, without loss of generality, consider a sequence
tn\prime = n\prime hn such that t \in ]tn\prime , tn\prime +1]. Then, for every \varphi \in C\infty 

0 (\BbbR d)
(4.19)\int 

\BbbR d

\varphi (x)dmn(tn\prime )(x) =

\int 
\BbbR d

\varphi (x)dmn(0)(x) +

n\prime  - 1\sum 
k=0

\int 
\BbbR d

\varphi (x)d [mn(tk+1) - mn(tk)] (x).

For all k = 0, . . . , n\prime  - 1 we have that
(4.20)\int 

\BbbR d \varphi (x)dm
n(tk+1)(x) =

\sum 
i\in \BbbZ d \varphi (xi)m

n
i,k+1

=
\sum 

j\in \BbbZ d m
n
j,k

1
2r

\sum r
\ell =1

\sum 
i\in \BbbZ d \varphi (xi)

\Bigl[ 
\beta i(\Phi 

\ell ,+
j,k [m

n]) + \beta i(\Phi 
\ell , - 
j,k [m

n])
\Bigr] 

=
\sum 

j\in \BbbZ d m
n
j,k

1
2r

\sum r
\ell =1

\Bigl[ 
I[\varphi ](\Phi \ell ,+

j,k [m
n]) + I[\varphi ](\Phi \ell , - 

j,k [m
n])

\Bigr] 
=

\sum 
j\in \BbbZ d m

n
j,k

1
2r

\sum r
\ell =1

\Bigl[ 
\varphi (\Phi \ell ,+

j,k [m
n]) + \varphi (\Phi \ell , - 

j,k [m
n])

\Bigr] 
+O(\rho 2n)

=
\sum 

j\in \BbbZ d m
n
j,k [\varphi (xj) + hnLb,\sigma ,\varphi [m

n](xj , tk)] +O
\bigl( 
\rho 2n + h2

n

\bigr) 
=

\int 
\BbbR d [\varphi (x) + hnLb,\sigma ,\varphi [m

n](x, tk)] dm
n(tk)(x) +O

\bigl( 
\rho 2n + h2

n

\bigr) 
,

where we have used a fourth order Taylor expansion for the terms \varphi (\Phi \ell ,+
j,k [m

n]) and

\varphi (\Phi \ell , - 
j,k [m

n]). As a consequence, (4.19) yields\int 
\BbbR d

\varphi (x)dmn(tn\prime )(x) =

\int 
\BbbR d

\varphi (x)dmn(0)(x)(4.21)

+hn

n\prime  - 1\sum 
k=0

\int 
\BbbR d

Lb,\sigma ,\varphi [m
n](x, tk)dm

n(tk)(x) +O

\biggl( 
\rho 2n
hn

+ hn

\biggr) 
.

Assumption (H)(i) implies the existence of a modulus of continuity \=\omega 1, independent
of k, such that
(4.22)\int 

\BbbR d
Lb,\sigma ,\varphi [m

n](x, tk)dm
n(tk)(x) =

\int 
\BbbR d

Lb,\sigma ,\varphi [m](x, tk)dm
n(tk)(x)+ \=\omega 1

\Biggl( 
sup

t\in [0,T ]
d1(m

n(t),m(t))

\Biggr) 
.

Since \phi has a compact support, condition (Lip) implies that Lb,\sigma ,\varphi [m](\cdot , tk) is Lip-
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DISCRETIZATION OF SOME NONLINEAR FPK EQUATIONS 2163

schitz, uniformly in k. Thus, by (2.2) and (4.8), we have
(4.23)\bigm| \bigm| \bigm| \bigm| \int 

\BbbR d

Lb,\sigma ,\varphi [m](x, tk)d (m
n(s) - mn(tk)) (x)

\bigm| \bigm| \bigm| \bigm| \leq Cd1(m
n(s),mn(tk)) \leq C\prime \surd hn \forall s \in [tk, tk+1),

for some positive constants C and C \prime , independent of n. This implies that\bigm| \bigm| \bigm| \bigm| hn \int 
\BbbR d

Lb,\sigma ,\varphi [m](x, tk)dm
n(tk)(x) - 

\int tk+1

tk

\int 
\BbbR d

Lb,\sigma ,\varphi [m](x, tk)dm
n(s)(x)

\bigm| \bigm| \bigm| \bigm| = O
\Bigl( 
h

3
2
n

\Bigr) 
.

Therefore, by (4.21),
(4.24)\int 

\BbbR d \varphi (x)dm
n(tn\prime )(x) =

\int 
\BbbR d \varphi (x)dm

n(0)(x) +
\int tn\prime 

0

\int 
\BbbR d

\^Ln
b,\sigma ,\varphi [m](x, s)dmn(s)(x)ds

+O
\Bigl( 

\rho 2
n

hn
+
\surd 
hn + \=\omega 1

\Bigl( 
supt\in [0,T ] d1(m

n(t),m(t))
\Bigr) \Bigr) 

,

where
\^Ln
b,\sigma ,\varphi [m](x, s) := Lb,\sigma ,\varphi [m](x, tk) \forall x \in \BbbR d, s \in [tk, tk+1).

By (H)(i), and the fact that \phi has compact support, we have that \^Ln
b,\sigma ,\varphi [m](\cdot , \cdot ) is

bounded, uniformly in n, and converges uniformly to Lb,\sigma ,\varphi [m](\cdot , \cdot ) in \BbbR d \times [0, T ]. As

a consequence, for each s \in [0, T ], we have that
\int 
\BbbR d

\^Lb,\sigma ,\varphi [m](x, s)dmn(s)(x) is uni-
formly bounded and converges, as n\rightarrow \infty , to

\int 
\BbbR d Lb,\sigma ,\varphi [m](x, s)dm(s)(x). Therefore,

by Lebesgue's dominated convergence theorem, the second term on the right-hand
side of (4.24) converges to\int t

0

\int 
\BbbR d

Lb,\sigma ,\varphi [m](x, s)dm(s)(x)ds.

Finally, passing to the limit in (4.24), we get that (2.5) holds true.

In the remainder of this section, we consider the case where b and \sigma satisfy only
assumption (H). Since in the proof of Theorem 4.1 the local Lipchitz assumption
(Lip) plays an important role, in the present case we need to regularize the coeffi-
cients, which will be done by convolution with a mollifier. Let \phi \in C\infty (\BbbR d) have a
compact support contained in the closed unit ball B(0, 1) := \{ x \in \BbbR d ; | x| \leq 1\} , and,
given a sequence \varepsilon n, with 0 < \varepsilon n \leq 1, set \phi \varepsilon n(x) := \phi (x/\varepsilon n)/(\varepsilon n)

d for all x \in \BbbR d. Let
us define

(4.25) bn[\mu ](x, t) := (\phi \varepsilon n \ast b[\mu ]) (x, t) and \sigma n[\mu ](x, t) := (\phi \varepsilon n \ast \sigma [\mu ]) (x, t),

where the convolution is applied in the space variable x and componentwise for
the coordinates of b[\mu ](\cdot , t) and \sigma [\mu ](\cdot , t). It is easy to check that for each \mu \in 
C([0, T ];\scrP 1(\BbbR d)) and each compact set K \subseteq \BbbR d, we have that bn and \sigma n satisfy
(4.18) with CK = C \prime 

K/\varepsilon n, where C
\prime 
K depends only on \phi and on

sup \{ | b[\mu ](x, t)| + | \sigma [\mu ](x, t)| | x \in K +B(0, 1), t \in [0, T ]\} <\infty .

We consider the approximation (3.22) of (FPK) with \Phi \ell ,+
i,k [\mu ] and \Phi \ell , - 

i,k [\mu ] replaced by

\Phi n,\ell ,+
i,k [\mu ] := xi + hnbn[\mu ](xi, tk) +

\surd 
rhn(\sigma n)\ell [\mu ](xi, tk),

\Phi n,\ell , - 
i,k [\mu ] := xi + hnbn[\mu ](xi, tk) - 

\surd 
rhn(\sigma n)\ell [\mu ](xi, tk),
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2164 ELISABETTA CARLINI AND FRANCISCO J. SILVA

respectively. Namely, find m \in \scrS \rho n,hn such that
(4.26)
mi,0 = \=m0(Ei) \forall i \in \BbbZ d,

mi,k+1 = 1
2r

r\sum 
\ell =1

\sum 
j\in \BbbZ d

\Bigl[ 
\beta i(\Phi 

n,\ell ,+
j,k [m]) + \beta i(\Phi 

n,\ell , - 
j,k [m])

\Bigr] 
mj,k \forall i \in \BbbZ d, k = 0, . . . , N  - 1.

The coefficients bn and \sigma n satisfy (H) and the linear growth condition (2.6) holds
with a constant C independent of n. As a consequence, for each n \in \BbbN , problem (3.22)
admits at least one solution mn and, denoting likewise the extension of mn in (3.17)
to an element in C([0, T ];\scrP 1(\BbbR d)), by (4.6) and (4.8), whose proofs can be reproduced
without modifications and with constants independent of n, the set \{ mn | n \in \BbbN \} is
relatively compact in C([0, T ];\scrP 1(\BbbR d)).

We have the following convergence result, assuming only (H) and whose proof is
almost identical to the previous one.

Theorem 4.2. Assume (H) and that \rho 2n = o(hn) and hn = o(\varepsilon 2n). Then, every
limit point m \in C([0, T ];\scrP 1(\BbbR d)) of mn (there exists at least one) solves (FPK). In
particular, (FKP) admits at least one solution.

Proof. Arguing exactly as in the proof of Theorem 4.1, and using the same no-
tation, we have the existence of m \in C([0, T ];\scrP 1(\BbbR d)) such that, up to some subse-
quence, mn \rightarrow m in C([0, T ];\scrP 1(\BbbR d)). Moreover, for each n \in \BbbN we have\int 

\BbbR d

\varphi (x)dmn(tn\prime )(x) =

\int 
\BbbR d

\varphi (x)dmn(0)(x)(4.27)

+hn

n\prime  - 1\sum 
k=0

\int 
\BbbR d

Lbn,\sigma n,\varphi [m
n](x, tk)dm

n(tk)(x) +O

\biggl( 
\rho 2n
hn

+ hn

\biggr) 
,

where Lbn,\sigma n,\varphi is given by (4.17), with b and \sigma replaced by bn and \sigma n, respectively.
Estimate (4.22) still holds and (4.23) changes to\bigm| \bigm| \bigm| \bigm| \int 

\BbbR d

Lbn,\sigma n,\varphi [m](x, tk)d (m
n(s) - mn(tk)) (x)

\bigm| \bigm| \bigm| \bigm| \leq C

\varepsilon n
d1(m

n(s),mn(tk)) \leq C\prime 
\surd 
hn

\varepsilon n
(4.28)

\forall s \in [tk, tk+1),

for some constants C and C \prime independent of n. Relation (4.27) then gives
(4.29)\int 

\BbbR d \varphi (x)dm
n(tn\prime )(x) =

\int 
\BbbR d \varphi (x)dm

n(0)(x) +
\int tn\prime 

0

\int 
\BbbR d

\^Lbn,\sigma n,\varphi [m](x, s)dmn(s)(x)ds

+O
\Bigl( 

\rho 2
n

hn
+

\surd 
hn

\varepsilon n
+ \=\omega 1

\Bigl( 
supt\in [0,T ] d1(m

n(t),m(t))
\Bigr) \Bigr) 

,

where \^Lbn,\sigma n,\varphi [m](x, s) := Lbn,\sigma n,\varphi [m](x, tk) for all x \in \BbbR d, and s \in [tk, tk+1). By

(H)(i) we have that \^Lbn,\sigma n,\varphi [m](\cdot , \cdot ) \rightarrow Lb,\sigma ,\varphi [m](\cdot , \cdot ) uniformly in \BbbR d \times [0, T ] and,
passing to the limit in (4.29), we can conclude as in the previous proof.

Remark 4.1. In particular, Theorem 4.2 yields a Peano-type existence result for
(FPK). We point out that more general existence results for the (FPK) equation are
proven in the articles [49, 50] by using purely analytical techniques.

Remark 4.2. (i) In the deterministic case \sigma \equiv 0, the proof in [21, Proposition 3.9]
shows that (4.8) can be replaced by

sup
n\in \BbbN 

d1(m
n(t),mn(s)) \leq C| t - s| \forall t, s \in [0, T ],
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and, hence, the estimate (4.28) can be improved to\bigm| \bigm| \bigm| \bigm| \int 
\BbbR d

Lbn,\sigma n,\varphi [m](x, tk)d (m
n(s) - mn(tk)) (x)

\bigm| \bigm| \bigm| \bigm| \leq C

\varepsilon n
d1(m

n(s),mn(tk)) \leq C \prime hn
\varepsilon n

\forall s \in [tk, tk+1),

for some constants C and C \prime independent of n. As a consequence, the result in
Theorem 4.2 holds true under the weaker assumption hn = o(\varepsilon n).

(ii) The regularization of the coefficients, defined in (4.25), can also be useful in
order to approximate the (FPK) equation with coefficients b and \sigma defined almost
everywhere w.r.t. the Lebesgue measure. In this case, in order to give a meaning to a
solution m of (2.5) one can require that m(t) should be absolutely continuous w.r.t.
the Lebesgue measure for almost every t \in [0, T ]. One can then consider coefficients
bn and \sigma n which regularize b and \sigma , but in general we can only expect L1 convergence
Lbn,\sigma n,\varphi to Lb,\sigma ,\varphi . In this case, the scheme (3.21) should be modified in order to
discretize the density of m and a stronger compactness result, for example in L\infty 

endowed with the weak\ast topology, should be proved for the constructed approximation
mn. As we will discuss in Remark 5.1(ii), this is exactly the situation in degenerate
MFGs (see [21, 22]).

5. Applications and numerical simulations. The scheme that we have pro-
posed in section 3 has already been tested for the case of some linear FPK equations
in [23]. In this section, we apply our scheme to solve two nonlinear models with
\sigma [m](x, t) \equiv \sigma Id for some \sigma \not = 0 (where Id is the d \times d identity matrix), but where
b[m](x, t) does not admit an explicit expression and has to be approximated. The
approximation technique is similar to the one presented at the end of the previous
section, where the coefficients are supposed to satisfy (H) only. In the first model
we consider an example of the so-called MFG system with nonlocal interactions (see
[45]). In this case, the drift b[m](x, t) is related to the value function of an optimal
control problem starting at x at time t, having running and terminal costs depending
on \{ m(s) ; s \in ]0, T [\} and m(T ), respectively. Therefore, as explained in Remark 3.5,
the proposed scheme is implicit. Our approximation is similar to the one in [21, 20, 22]
dealing with degenerate MFG systems and where the authors prove the convergence
when the state dimension d is equal to one. In our present nondegenerate setting, the
theory developed in section 4 allows us to prove the convergence of the scheme in gen-
eral space dimensions. In the second nonlinear model, we consider an FPK equation
where the velocity field b[m](x, t) depends on the value function of an optimal control
starting at x at time t with running and terminal costs depending only on the value
m(t). This model, which seems to be new, is inspired by the Hughes model [37] and
could be used to model crowd motion in some ``panic"" situations. We prove that the
related FPK equation admits at least one solution, and we also provide a convergence
result for the associated scheme.

5.1. Mean Field Games as a nonlinear implicit model. We consider here
the MFG system

(5.1)

 - \partial tv  - \sigma 2

2 \Delta v + 1
2 | \nabla v| 

2 = F (x,m(t)) in \BbbR d \times (0, T ),

\partial tm - \sigma 2

2 \Delta m - div
\bigl( 
\nabla vm

\bigr) 
= 0 in \BbbR d \times (0, T ),

v(x, T ) = G(x,m(t)) for x \in \BbbR d, m(0) = \=m0(\cdot ) \in \scrP 2(\BbbR d),
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where \sigma \not = 0 and F , G : \BbbR d \times \scrP 1(\BbbR d) \rightarrow \BbbR are continuous, twice differentiable w.r.t.
the space variable, and satisfy that there exists a constant c > 0 such that for \psi = F,G

(5.2) sup
x\in \BbbR d,\mu \in \scrP 1(\BbbR d)

\bigl( 
| \psi (x, \mu )| + | \nabla x\psi (x, \mu )| + | \nabla 2

xx\psi (x, \mu )| 
\bigr) 
\leq c.

System (5.1) is a particular instance of a generic class of models introduced
by Lasry and Lions in [43, 44, 45] which characterize Nash equilibria of symmetric
stochastic differential games with an infinite number of players. In order to explain
the intuition behind (5.1), for m \in C([0, T ];\scrP 1(\BbbR d)) consider the HJB equation

(5.3)
 - \partial tv  - \sigma 2

2 \Delta v + 1
2 | \nabla v| 

2 = F (x,m(t)) in \BbbR d \times (0, T ),

v(x, T ) = G(x,m(T )) for x \in \BbbR d.

Standard results in stochastic control (see, e.g., [33]) imply that the unique solution
v[m] of (5.3) can be represented as
(5.4)

v[m](x, t) := inf
\alpha 

\BbbE 

\Biggl( \int T

t

\bigl[ 
1
2 | \alpha (s)| 

2 + F (Xx,t,\alpha (s),m(s))
\bigr] 
ds+G(Xx,t,\alpha (T ),m(T ))

\Biggr) 
,

where the expectation \BbbE is taken in a complete probability space (\Omega ,\scrF ,\BbbP ) on which an
r-dimensional Brownian motion W is defined, the \BbbR d-valued processes \alpha are adapted
to the natural filtration generated by W , completed with the \BbbP -null sets, and they

satisfy \BbbE (
\int T

0
| \alpha (t)| 2dt) <\infty , and Xx,t,\alpha is defined as the solution of

(5.5) dX(s) = \alpha (s)ds+ \sigma dW (s) s \in (t, T ), X(t) = x.

The optimization problem in (5.4) can be interpreted in terms of a generic small agent
whose state is x at time t and optimizes a cost depending on the future distribution
of the agents \{ m(s) ; s \in ]t, T ]\} . The solution v[m] of (5.3) is classical (see, e.g.,
[16], where the proof is based upon the Hopf--Cole transformation). Note that (5.4),
assumption (5.2), and standard estimates for the solutions of the controlled SDE (5.5)
imply that C([0, T ];\scrP 1(\BbbR d))\times \BbbR d \times [0, T ] \ni (\mu , x, t) \mapsto \rightarrow v[\mu ](x, t) \in \BbbR is bounded and
continuous. In addition, we have that

(5.6) sup
t\in [0,T ], \mu \in C([0,T ];\scrP 1(\BbbR d))

| \nabla xv[\mu ](\cdot , t)| \infty <\infty ,

and \BbbR d \ni x \mapsto \rightarrow \nabla xv[\mu ](x, t) \in \BbbR d is locally Lipschitz with local Lipschitz constants
independent of \mu and t. Thus, for every (x, t) \in \BbbR d \times [0, T ) the equation

(5.7) dX(s) =  - \nabla xv[m] (X(s), s) ds+ \sigma dW (s) s \in (t, T ), X(t) = x,

admits a unique solution Xx,t and, hence, by a verification argument (see, e.g., [33]),
the optimal trajectory for v[m](x, t) in (5.4) is given by Xx,t and the optimal control
\alpha is given in the feedback form \alpha (x, t) =  - \nabla xv[m] (x, t). Therefore, if all the players,
distributed as m0 at time 0, act optimally according to this feedback law, then the
evolution of m0 will be described by the FPK equation

\partial t\mu  - \sigma 2

2
\Delta \mu  - div

\bigl( 
\nabla v[m]\mu 

\bigr) 
= 0 in \BbbR d \times (0, T ), \mu (0) = m0,
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and the equilibrium condition reads m = \mu , i.e.,

(5.8) \partial tm - \sigma 2

2
\Delta m - div

\bigl( 
\nabla v[m]m

\bigr) 
= 0 in \BbbR d \times (0, T ), m(0) = m0.

The equilibrium equation (5.8) is a particular instance of (FKP) with r = d, \sigma ij = \sigma 
if i = j and 0 otherwise, and

(5.9) b[\mu ](x, t) :=  - \nabla v[\mu ](x, t) \forall (\mu , x, t) \in C([0, T ];\scrP 1(\BbbR d))\times \BbbR d \times [0, T ],

which depends on \mu nonlocally in time through \{ \mu (s) ; s \in (t, T ]\} by (5.4) (with m
replaced by \mu ).

Notice that (5.6) implies that (H)(ii) is satisfied. In order to check (H)(i), recall
that v is uniformly semiconcave w.r.t. the space variable (see, e.g., [15] and [33, Chap-
ter 4]), i.e., there exists c > 0, independent of t \in [0, T ] and \mu \in C([0, T ];\scrP 1(\BbbR d)),
such that for all x \in \BbbR d, \mu \in \scrP 1(\BbbR d), and t \in [0, T ],

(5.10) v[\mu ](x+ h, t) - 2v[\mu ](x, t) + v[\mu ](x - h, t) \leq c| h| 2 \forall h \in \BbbR d,

or equivalently, since v[\mu ](\cdot , t) is differentiable, there exists a constant c > 0, indepen-
dent of t \in [0, T ] and \mu \in \scrP 1(\BbbR d), such that

(5.11) v[\mu ](x+ h, t) \leq v[\mu ](x, t) +\nabla xv[\mu ](x, t) \cdot h+ c| h| 2 \forall h \in \BbbR d, t \in [0, T ].

As a consequence, the continuity of v yields that for any (\mu n, xn, tn) \rightarrow (\mu , x, t) we
have that any limit point p of \nabla xv[\mu n](xn, tn) (there exists at least one by (5.6)) must
satisfy

v[\mu ](x+ h, t) \leq v[\mu ](x, t) + p \cdot h+ c| h| 2 \forall h \in \BbbR d, t \in [0, T ],

and, hence, p = \nabla xv[\mu ](x, t) by [15, Propositions 3.3.1 and 3.1.5(c)]. Therefore, b,
defined in (5.9), is continuous and, hence, (H)(i) holds true.

By the previous remarks, the results of sections 3 and 4 are applicable to (5.7).
However, from the numerical point of view, we cannot implement the fully discrete
scheme directly using b, because we do not have an explicit expression for this vector
field, which depends on the value function v. To overcome this difficulty, we approxi-
mate b by a sequence of computable vector fields. We consider an SL scheme for the
solution to (5.3), with m replaced by \mu . Given \rho > 0, h = T/N > 0, with N \in \BbbN , and
\mu \in C([0, T ];\scrP 1(\BbbR d)) we first define v\rho ,h[\mu ] in \scrG \rho \times \{ 0, . . . , N\} recursively as
(5.12)

v\rho ,hi,k = inf\alpha \in \BbbR d

\Bigl\{ 
h
2
| \alpha | 2 + 1

2d

\sum d
\ell =1

\Bigl( 
I[v\rho ,h\cdot ,k+1](xi + h\alpha + \sigma 

\surd 
hde\ell ) + I[v\rho ,h\cdot ,k+1](xi + h\alpha  - \sigma 

\surd 
hde\ell )

\Bigr) \Bigr\} 
+hF (xi, \mu (tk)) \forall i \in \BbbZ d, \forall k = 0, . . . , N  - 1,

v\rho ,hi,N = G(xi, \mu (T )) \forall i \in \BbbZ d,

where \{ e\ell ; \ell = 1, . . . , d\} is the canonical basis of \BbbR d, and we have omitted the \mu 
dependence of v\rho ,h. We then define v\rho ,h : C([0, T ];\scrP 1(\BbbR d))\times \BbbR d \times [0, T ] \rightarrow \BbbR by

v\rho ,h[\mu ](x, t) = I[v\rho ,h\cdot ,k [\mu ]](x) if t \in [tk, tk+1[.

In order to get a function differentiable w.r.t. the space variable, given \varepsilon > 0 and
\phi \in C\infty (\BbbR d), nonnegative and such that

\int 
\BbbR d \phi (x)dx = 1, let us set \phi \varepsilon (x) :=

1
\varepsilon d
\phi (x/\varepsilon ).

We then define v\rho ,h,\varepsilon : C([0, T ];\scrP 1(\BbbR d))\times \BbbR d \times [0, T ] \rightarrow \BbbR by

v\rho ,h,\varepsilon [\mu ](\cdot , t) :=
\bigl( 
\phi \varepsilon \ast v\rho ,h[\mu ]

\bigr) 
(\cdot , t) \forall t \in [0, T ].
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In [22, Lemma 3.2 (i)] it is shown that v\rho ,h,\varepsilon [\mu ](\cdot , t) is Lipschitz, uniformly in (\rho , h, \varepsilon , \mu , t),
which shows the bound (5.6) for v\rho ,h,\varepsilon . Using that v\rho ,h satisfies a discrete semicon-
cavity property (see [22, Lemma 3.1 (ii)]), by [1, Lemma 4.3 and Remark 4.4] there
exists a constant c > 0, independent of (\rho , h, \varepsilon , \mu , t), such that v\rho ,h,\varepsilon [\mu ](\cdot , t) satisfies
the following weak semiconcavity property:

(5.13)
\bigl( 
\nabla xv

\rho ,h,\varepsilon [\mu ](y, t) - \nabla xv
\rho ,h,\varepsilon [\mu ](x, t)

\bigr) 
\cdot (y  - x) \leq c

\biggl( 
| y  - x| 2 + \rho 2

\varepsilon 2

\biggr) 
.

Using the previous ingredients, we can prove the following result.

Proposition 5.1. Consider sequences \rho n, hn, and \varepsilon n of positive numbers con-

verging to 0 and such that
\rho 2
n

hn
\rightarrow 0 and \rho n = o(\varepsilon n). Then, for every sequence

\mu n \in C([0, T ];\scrP 1(\BbbR d)) converging to \mu we have that v\rho n,hn,\varepsilon n [\mu n] and \nabla xv
\rho n,hn,\varepsilon n [\mu n]

converge to v[\mu ] and \nabla xv[\mu ], respectively, uniformly over compact subsets of \BbbR d\times [0, T ].

Proof. The assertion on the convergence of v\rho n,hn,\varepsilon n [\mu n] is a consequence of the

uniform convergence over compact sets of v\rho n,hn [\mu n] to v[\mu ] if
\rho 2
n

hn
\rightarrow 0, which is a

standard result proved with the theory developed in [8] (see, e.g., [27, Theorem 4.2]).
The argument to establish the uniform convergence of \nabla xv

\rho n,hn,\varepsilon n [\mu n] is similar to
the proof of [21, Theorem 3.5]. Namely, for all n \in \BbbN , xn \rightarrow x, tn \rightarrow t, and y \not = x we
have (for n large enough)

v\rho n,hn,\varepsilon n [\mu n](y, tn) - v\rho n,hn,\varepsilon n [\mu n](xn, tn) - \nabla xv
\rho n,hn,\varepsilon n [\mu n](xn, tn)\cdot (y - xn) \leq r1n+r2n,

where

r1,n :=
\int \rho n

\varepsilon n| y - xn| 
0

\bigl[ 
\nabla xv

\rho n,hn,\varepsilon n [\mu n](xn + \tau (y  - xn), tn) - \nabla xv
\rho n,hn,\varepsilon n [\mu n](xn, tn)

\bigr] 
\cdot (y  - xn)d\tau ,

r2,n :=
\int 1

\rho n
\varepsilon n| y - xn| 

\bigl[ 
\nabla xv

\rho n,hn,\varepsilon n [\mu n](xn + \tau (y  - xn), tn) - \nabla xv
\rho n,hn,\varepsilon n [\mu n](xn, tn)

\bigr] 
\cdot (y  - xn)d\tau .

Since \rho n

\varepsilon n
\rightarrow 0, the uniform Lipschitz property satisfied by v\rho n,hn,\varepsilon n [\mu n](\cdot , t), for t \in 

[0, T ], implies that r1,n \rightarrow 0. On the other hand, by (5.13),

r2,n \leq 
\int 1

\rho n
\varepsilon n| y - xn| 

c

\tau 

\Biggl( 
\tau 2| y  - xn| 2 +

\biggl( 
\rho n
\varepsilon n

\biggr) 2
\Biggr) 
d\tau \leq 2c| y  - xn| 2

\int 1

0

\tau d\tau = c| y  - xn| 2.

By the uniform convergence of v\rho n,hn,\varepsilon n [\mu n], we conclude that any limit point p of
\nabla xv

\rho n,hn,\varepsilon n [\mu n](xn, tn) (there exists at least one because this sequence is uniformly
bounded) must satisfy

v[\mu ](y, t) \leq v[\mu ](x, t) + p \cdot (y  - x) + c| y  - x| 2 \forall y \in \BbbR d, t \in [0, T ],

which implies that p = \nabla xv[\mu ](x, t) by [15, Propositions 3.3.1 and 3.1.5(c)]. Thus, if
for all i = 1, . . . , d we denote

bsupi := lim sup
x\prime \rightarrow x,t\prime \rightarrow t,n\rightarrow \infty 

\partial xiv
\rho n,hn,\varepsilon n [\mu n](x

\prime , t\prime ), binfi := lim inf
x\prime \rightarrow x,t\prime \rightarrow t,n\rightarrow \infty 

\partial xiv
\rho n,hn,\varepsilon n [\mu n](x

\prime , t\prime ),

we deduce that bsupi = binfi = \partial xiv[\mu ](x, t), and so the local uniform convergence of
\nabla xv

\rho n,hn,\varepsilon n [\mu n](\cdot , \cdot ) to \nabla xv[\mu ](\cdot , \cdot ) follows (see, e.g., [7, Chapter V, Lemma 1.9]).

Suppose that \rho n, hn, and \varepsilon n satisfy the conditions in Proposition 5.1, and denote
by mn \in C([0, T ];\scrP 1(\BbbR d)) the extension to C([0, T ];\scrP 1(\BbbR d)) of the solution of (3.22)
computed with coefficients bn[\mu ](x, t) := \nabla xv

\rho n,hn,\varepsilon n [\mu ](x, t) and \sigma n
\ell = \sigma e\ell (\ell =

1, . . . , d).
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Proposition 5.2. Assume that \rho 2n = o(hn) and that \rho n = o(\varepsilon n). Then, every
limit point m \in C([0, T ];\scrP 1(\BbbR d)) of mn (there exists at least one) solves (5.8).

Proof. The proof is analogous to the proof of Theorem 4.1. Indeed, arguing
exactly as in the proof of that theorem, the sequence mn has at least one limit point
m \in C([0, T ];\scrP 1(\BbbR d)) and for every \varphi \in C\infty 

0 (\BbbR d) the following equality holds:\int 
\BbbR d

\varphi (x)dmn(tn\prime )(x) =

\int 
\BbbR d

\varphi (x)dmn(0)(x)(5.14)

+hn

n\prime  - 1\sum 
k=0

\int 
\BbbR d

Lbn,\sigma ,\varphi [m
n](x, tk)dm

n(tk)(x) +O

\biggl( 
\rho 2n
hn

+ hn

\biggr) 
,

where we recall that Lbn,\sigma ,\varphi [m
n] is given by (4.17). Denoting still bymn a subsequence

of mn converging to m, Proposition 5.1 implies that bn[mn] \rightarrow b[m] := \nabla xv[m]
uniformly over compact subsets of \BbbR d \times [0, T ]. Therefore,

(5.15)

\int 
\BbbR d

Lbn,\sigma ,\varphi [m
n](x, tk)dm

n(tk)(x) =

\int 
\BbbR d

Lb,\sigma ,\varphi [m](x, tk)dm
n(tk)(x) +O(\delta n),

where

\delta n := sup \{ | Lbn,\sigma ,\varphi [m
n](x, s) - Lb,\sigma ,\varphi [m](x, s)| | x \in supp(\varphi ), s \in [0, T ]\} 

tends to 0 as n \rightarrow \infty . Using (5.15) and that b is locally Lipschitz w.r.t. x, we can
complete the proof by following the same steps as those in the proof of Theorem 4.1.

Remark 5.1. (i) If F and G satisfy the monotonicity conditions\int 
\BbbR d [F (x,m1) - F (x,m2] d(m1  - m2)(x) > 0 \forall m1,m2 \in \scrP 1(\BbbR d), m1 \not = m2,\int 
\BbbR d [G(x,m1) - G(x,m2] d(m1  - m2)(x) \geq 0 \forall m1,m2 \in \scrP 1(\BbbR d),

then system (5.1) admits a unique solution (v,m) (see [45]). In this case the entire
sequence mn in Proposition 5.2 converges to m.

(ii) In the articles [21, 22] a very similar scheme is proposed for degenerate MFG
systems whenm0 is absolutely continuous, with a compact support and with an essen-
tially bounded density. In those frameworks, the velocity field b[\mu ](x, t) is only defined
for a.e. x \in \BbbR d. Therefore (see Remark 4.2(ii)), the proposed scheme discretizes the
density of m for which an L\infty bound is proved if d = 1. Moreover, the authors show
the L1 convergence of the approximations of the velocity field, which is weaker than
the result in Proposition 5.1. On the other hand, when d = 1, uniform bounds in
L\infty are shown for the approximated densities, which allows them to prove, in these
degenerate cases, a version of Proposition 5.2 in the one dimensional case. In their
entire analysis, the extra assumptions on m0 play an important role.

(iii) The introduction of the additional parameter \varepsilon n > 0 in the fully discrete
scheme, and the corresponding assumption \rho n = o(\varepsilon n), is a disadvantage of this
discretization compared with the finite difference discretization in [2], where only the
space and time step parameters are considered.

5.1.1. Numerical test. We consider the MFG system (5.1) in dimension d =
r = 1 on the space-time domain \scrO \times [0, T ] := [ - 3, 3] \times [0, 5], \sigma = 0.01, and with
running and terminal costs given respectively by

(5.16) F (x,m) := d(x,\scrP )2V\delta (x,m), G(x,m) := F (x,m),
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where

V\delta (x,m) := (\phi \delta \ast (\phi \delta \ast m))(x) with \phi \delta (x) :=
1

\delta 
\surd 
2\pi 
e

 - x2

2\delta 2 ,

and d(\cdot ,\scrP ) denotes the distance to the set \scrP := [ - 2, - 2.5] \cup [1, 1.5]. We choose as
initial distribution

\=m0(x) =
\nu (x)\int 

\scrO \nu (y)dy
\BbbI \scrO (x) with \nu (x) := e - x2/0.2.

Since we consider a bounded space domain, we complement the FPK equation (5.8)
with a homogeneous Neumann boundary condition, which, in terms of the underlying
characteristics, means that trajectories are reflected once they touch the boundary.
As a consequence, the total mass is preserved during the evolution. Accordingly,
at the level of the fully discrete scheme we reflect the discrete characteristics. This
modification of the scheme is discussed in [19] in the context of the Hughes model for
pedestrian flow (see [37]). Let us point out that a theoretical study of the convergence
of the resulting scheme has not yet been established and remains as an interesting
subject of future research.

By formula (5.4) the interpretation in this setting is that agents want to reach
the meeting areas, defined by the set \scrP , without spending too much effort (modeled
by the | \alpha | 2 term in (5.4)), and to avoid congestion, modeled by the coupling terms F
and G. Once the players reach the meeting areas they have no incentive to leave, and
they remain in \scrP .

We heuristically solve the implicit scheme (3.22) using the learning procedure
proposed in [17] (analyzed at the continuous level). More precisely, given the dis-
cretization parameters \rho , h, and \varepsilon and an initial guess m0 for the solution of (3.22),
we compute v0 by solving backwards (5.12) with \mu = m0. The new iterate m1 is
computed using scheme (3.14) with

\Phi \pm 
j,k = xj  - h \~\nabla (v0)\varepsilon j,k \pm 

\surd 
h\sigma ,

where \~\nabla (v0)\varepsilon j,k is an approximation of \nabla xv
\rho ,h,\varepsilon [m0](xj , tk). Then, given mp (p \geq 1)

we compute vp by solving backwards (5.12) with \mu = 1
p+1

\sum p
p\prime =0m

p\prime 
and define mp+1

using (3.14) with

\Phi \pm 
j,k = xj  - h \~\nabla (vp)\varepsilon j,k \pm 

\surd 
h\sigma ,

where \~\nabla (vp)\varepsilon j,k is an approximation of \nabla xv
\rho ,h,\varepsilon [mp](xj , tk). We continue with these

iterations until the difference between mp and mp+1 is less than 0.01 in the discrete
infinity norm.

Remark 5.2. Numerically, this heuristic performs rather well. The proof of con-
vergence of this algorithm is not analyzed in this paper, and it is postponed to a future
work. One could expect that the arguments in [17] apply to a discrete time, discrete
space MFG (see [35]). The main issue with the approximation (3.22) is that it does
not correspond exactly to a discrete MFG because the distribution of the players does
not evolve according to the discrete optimal controls of the typical players (computed
as the optimizers of the right-hand side of (5.12)), but it evolves according to their
approximations \nabla xv

\rho ,h,\varepsilon [mp](xj , tk).

The numerical approximation of the density m\rho ,h,\varepsilon for \rho = 0.02, h = \rho , \varepsilon = 0.15,
and \delta = 0.02 is depicted in Figure 1. In Figure 2, we plot the densities m\rho ,h,\varepsilon at times
t = 0, 0.6, and 5. We observe that the density of agents divides into three groups. The
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largest one moves towards the right meeting area which is the closest one. The second
largest group moves towards the left area. The third and smallest group waits before
moving towards the meeting area. We note that, in this equilibrium configuration,
the agents somehow make rational decisions based on their aversion to crowded places
out of the meeting zones.

Fig. 1. Test 5.1.1: 3D and 2D views in the (x, t) domain of the evolution of the density of agents.

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

 

 

t=0

t=30h

t=T

Fig. 2. Test 5.1.1: Densities at times t = 0, 0.6, and 5 (black squares on the x axis represent
the boundary of the ``meeting areas"").

5.2. A nonlinear Hughes-type explicit model. In this section we consider
the FPK equation

(5.17) \partial tm - \sigma 2

2
\Delta m - div

\bigl( 
\nabla v[m]m

\bigr) 
= 0 in \BbbR d \times (0, T ), m(0) = \=m0,

where v : C([0, T ];\scrP 1(\BbbR d))\times \BbbR d \times [0, T ] \rightarrow \BbbR is given by
(5.18)

v[m](x, t) := inf
\alpha 

\BbbE 

\Biggl( \int T

t

\bigl[ 
1
2 | \alpha (s)| 

2 + F (Xx,t,\alpha (s),m(t))
\bigr] 
ds+G(Xx,t,\alpha (T ),m(t))

\Biggr) 
,
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and the processes \alpha and Xx,t,\alpha are as in section 5.1. We also assume that F and G
satisfy (5.2).

Note that the main difference with the MFG model considered in section 5.1 is
that the optimal control problem solved by an agent located at point x at time t
depends on the global distribution m of the agents only through its value at time t.
In this sense, agents do not forecast, or in other words, no learning procedure has
been adopted by the population of agents regarding their future behavior (see [17] for
the analysis of the fictitious play procedure in MFGs which can explain the formation
of the equilibria). This model is a variation of the one introduced by Hughes in
[29], where the optimal control problem solved by the typical player is stationary of
minimum time type. In terms of PDEs, at each time t \in (0, T ) we consider the HJB
equation

(5.19)
 - \partial su(x, s) - \sigma 2

2 \Delta u(x, s) + 1
2 | \nabla u(x, s)| 

2 = F (x,m(t)) in \BbbR d \times (0, T ),

u(x, T ) = G(x,m(t)) for x \in \BbbR d,

which admits a classical solution u[m(t)]. We have that v[m](x, t) = u[m(t)](x, t). By
the continuity of F and G, assumption (5.2), and the representation formula (5.18),
we have that v is continuous. This can also be seen as a consequence of the stability
of viscosity solutions with respect to continuous parameter perturbations (for (5.19)
the parameter is m(t)). Moreover, as in the case of MFG, assumption (5.2) implies
that

(5.20) sup
t\in [0,T ], m\in C([0,T ];\scrP 1(\BbbR d))

| \nabla xv[m](\cdot , t)| \infty <\infty ,

and that for all t \in [0, T ], \nabla xv[m](\cdot , t) is locally Lipschitz, with local Lipschitz con-
stants which are independent of (m, t). In addition, v[m](\cdot , t) is semiconcave, with a
semiconcavity constant which is independent of (m, t). Using this property and argu-
ing exactly as in section 5.1 we obtain that (m,x, t) \in C([0, T ];\scrP 1(\BbbR d))\times \BbbR d\times [0, T ] \rightarrow 
\nabla xv[m](x, t) \in \BbbR d is continuous and so Theorem 4.1 gives the following result.

Proposition 5.3. Equation (5.17) admits at least one solution.

As in the case of MFGs, in practice we do not know explicitly the velocity vector
field  - \nabla xv[m](x, t), and so we have to approximate it. Given \^\mu \in \scrP 1(\BbbR d), we consider
first an approximation of the solution u[\^\mu ] to (5.19), where m(t) is replaced by \^\mu .
Given \rho > 0, h = T/N > 0, with N \in \BbbN and \^\mu \in \scrP 1(\BbbR d), we define
(5.21)

u\rho ,hi,k [\^\mu ] = inf\alpha \in \BbbR d

\Bigl\{ 
h
2 | \alpha | 

2 + 1
2d

\sum d
\ell =1

\Bigl( 
I[u\rho ,h\cdot ,k [\^\mu ]](xi + h\alpha + \sigma 

\surd 
hde\ell )

+I[u\rho ,h\cdot ,k+1[\^\mu ]](xi + h\alpha  - \sigma 
\surd 
hde\ell )

\Bigr) \Bigr\} 
+hF (xi, \^\mu ) \forall i \in \BbbZ d, \forall k = 0, . . . , N  - 1,

u\rho ,hi,N [\^\mu ] = G(xi, \^\mu ) \forall i \in \BbbZ d,

which is extended to \scrP 1(\BbbR d)\times \BbbR d \times [0, T ], by setting

u\rho ,h[\^\mu ](x, t) := I[u\rho ,h\cdot ,k [\^\mu ]](x) if t \in [tk, tk+1[.

Now, given \varepsilon > 0 and \phi \in C\infty (\BbbR d), nonnegative and such that
\int 
\BbbR d \phi (x)dx = 1, we

define u\rho ,h,\varepsilon : \scrP 1(\BbbR d)\times \BbbR d \times [0, T ] \rightarrow \BbbR by

u\rho ,h,\varepsilon [\^\mu ](\cdot , t) :=
\bigl( 
\phi \varepsilon \ast u\rho ,h[\^\mu ]

\bigr) 
(\cdot , t) \forall t \in [0, T ],
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where \phi \varepsilon (x) :=
1
\varepsilon d
\phi (x/\varepsilon ). Notice that, reasoning as in the proof of [21, Theorem 3.3],

if \^\mu n \rightarrow \^\mu in \scrP 1(\BbbR d) and \rho 2n = o(hn), then

(5.22) u\rho n,hn,\varepsilon n [\^\mu n] \rightarrow u[\^\mu ], uniformly over compact subsets of \BbbR d \times [0, T ].

The approximation that we consider for C([0, T ];\scrP 1(\BbbR d))\times \BbbR d\times [0, T ] \ni (\mu , x, t) \mapsto \rightarrow 
v[\mu ](x, t) \in \BbbR is v\rho ,h,\varepsilon : C([0, T ];\scrP 1(\BbbR d))\times \BbbR d \times [0, T ] \rightarrow \BbbR , defined as

v\rho ,h,\varepsilon [\mu ](\cdot , t) = u\rho ,h,\varepsilon [\mu (tk)](\cdot , t) if t \in [tk, tk+1[.

Comparing with (5.12), where given \mu \in C([0, T ];\scrP 1(\BbbR d)) the scheme discretizes only
(5.3) (with m replaced by \mu ), in order to approximate v, we now need to compute
u\rho ,h,\varepsilon [\mu (tk)], the solution to (5.21), for each k = 0, . . . , N  - 1.

By assumption (5.2), the bound (5.6) and the semiconcavity property (5.13) re-
main valid for v\rho ,h,\varepsilon . Now, let \rho n, hn, and \varepsilon n satisfy the conditions in Proposition 5.1
and let mn \in C([0, T ];\scrP 1(\BbbR d)) be the extension to C([0, T ];\scrP 1(\BbbR d)) of the solution
to (3.22) computed with coefficients bn[\mu ](x, t) := \nabla xv

\rho n,hn,\varepsilon n [\mu ](x, t) and \sigma n
\ell = \sigma e\ell 

(\ell = 1, . . . , d). As before, using that \nabla xv
\rho n,hn,\varepsilon n [mn](\cdot , t) is uniformly bounded in t

and n, we have that mn has at least one limit point m \in C([0, T ];\scrP 1(\BbbR d)). Denoting
still by mn a sequence converging to m, setting vn(x, t) := v\rho n,hn,\varepsilon n [mn](x, t), and
using (5.22), for all (x, t) we get

lim supx\prime \rightarrow x,t\prime \rightarrow t,n\rightarrow \infty vn(x\prime , t\prime ) = lim supx\prime \rightarrow x,t\prime \rightarrow t,n\rightarrow \infty u\rho n,hn,\varepsilon n [mn(tn)](x
\prime , t\prime )

= u[m(t)](x, t)

= lim infx\prime \rightarrow x,t\prime \rightarrow t,n\rightarrow \infty u\rho n,hn,\varepsilon n [mn(tn)](x
\prime , t\prime )

= lim infx\prime \rightarrow x,t\prime \rightarrow t,n\rightarrow \infty vn(x\prime , t\prime ),

where tn \in \{ 0, hn, 2hn, . . . , T  - hn\} is such that t\prime \in [tn, tn + hn). Since v[m](x, t) =
u[m(t)](x, t), by [7, Chapter V, Lemma 1.9] we get that vn converges to v[m] uniformly
over compact subsets of \BbbR d \times [0, T ]. Since vn also satisfies (5.13), arguing as in the
proof of Proposition 5.1, we have that \nabla xv

n \rightarrow \nabla xv[m] uniformly over compact
subsets of \BbbR d \times [0, T ]. Using this fact, the proof of the following result is the same as
the proof of Proposition 5.2.

Proposition 5.4. Assume that \rho 2n = o(hn) and that \rho n = o(\varepsilon n). Then, every
limit point m \in C([0, T ];\scrP 1(\BbbR d)) of mn (there exists at least one) solves (5.17).

5.2.1. Numerical test. For the sake of comparison, we consider here the same
framework as the one in subsection 5.1.1; i.e., we take d = r = 1, we work on
the domain \scrO \times [0, T ] = [ - 3, 3] \times [0, 5], and we impose a homogeneous Neumann
boundary condition on the FPK equation (5.17). The functions F and G are also as
in the previous test, as well as the initial distribution \=m0 of the agents.

We proceed iteratively in the following way: given the discrete measure m\rho ,h,\varepsilon 
k

at time tk (k = 0, . . . , N  - 1), we compute at each space grid point j the discrete

value function vj,k by using (5.21) with \mu (tk) replaced by m\rho ,h,\varepsilon 
k . We regularize the

interpolated function I[v\cdot ,k] by using a discrete space convolution with a mollifier \phi \varepsilon .

We denote by \~\nabla v\varepsilon j,k the approximation of its spatial gradient at xj . Then we calculate

m\rho ,h,\varepsilon 
k+1 with scheme (3.22) by approximating the discrete trajectories by

\Phi \pm 
j,k = xj  - h \~\nabla v\varepsilon j,k \pm 

\surd 
h\sigma ,
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and we iterate the process until k = N  - 1. Note that, by construction, the scheme is
explicit in time.

The approximation of the density evolution in the (x, t) domain, computed with
\rho = 0.02, h = \rho , \varepsilon = 0.15, and \delta = 0.01, is shown in Figure 3. In Figure 4, we plot the
approximated density at times t = 0, 0.6, and 5. We observe that the initial density
\=m0 divides into two parts. The first one quickly reaches the meeting area on the right,
and once there it stops and begins to accumulate in this zone. The second part of
the density moves in the opposite direction, trying to reach the left meeting area. In
contrast to the presented MFG model, in this model the agents make their decisions
based only on the current global configuration. As a consequence, we observe faster
and higher accumulation of agents in the meeting zones.

Fig. 3. Test 5.2.1: 3D and 2D views in the (x, t) domain of the evolution of the density of agents.

-3 -2 -1 0 1 2 3
0

1

2

3

4

5

6

7

t=0

t=30h

t=T

Fig. 4. Test 5.2.1: Density of agents at times t = 0, 0.6, and 5 (black squares on the x axis
represent the boundary of the ``meeting areas"").
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