A set of missense mutations in the gene encoding profilin-1 has been linked to the onset of familial forms of ALS (fALS), also known as Lou Gehrig’s disease. The pathogenic potential of these mutations is linked to the formation of intracellular inclu- sions of the mutant proteins and correlates with the mutation- induced destabilization of its native, fully folded state. However, the mechanism by which these mutations promote misfolding and self-assembly is yet unclear. Here, using temperature-jump and stopped-flow kinetic measurements, we show that, during refolding, WT profilin-1 transiently populates a partially folded (PF) state endowed with hydrophobic clusters exposed to the solvent and with no detectable secondary structure. We observed that this conformational state is marginally stable at neutral pH but becomes significantly populated at mildly acidic pH. Interestingly, the fALS-associated mutations did not cause a change in the refolding mechanism of profilin-1, but induced a stabilization of the PF state. In the presence of preformed pro- filin-1 aggregates, the PF state, unlike the unfolded and folded states, could interact with these aggregates via nonspecific hydrophobic interactions and also increase thioflavin-T fluores- cence, revealing its amyloidogenic potential. Moreover, in the variants tested, we found a correlation between conformational stability of PF and aggregation propensity, defining this con- formational state as an aggregation-prone folding intermedi- ate. In conclusion, our findings indicate that mutation-in- duced stabilization of a partially folded state can enhance profilin-1 aggregation and thereby contribute to the patho- genicity of the mutations.
Stability of an aggregation-prone partially folded state of human profilin-1 correlates with aggregation propensity / Edoardo Del Poggetto‡, ; Toto, Angelo; Chiara, Aloise‡; Francesco Di Piro‡, ; Ludovica, Gori‡; Malatesta, Francesco; Gianni, Stefano; X Fabrizio Chiti‡, ; And, X Francesco Bemporad‡1. - In: JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 1083-351X. - (2018), pp. 10303-10313. [10.1074/jbc.RA118.002087]
Stability of an aggregation-prone partially folded state of human profilin-1 correlates with aggregation propensity
Angelo Toto§;Francesco Malatesta§;Stefano Gianni§¶;
2018
Abstract
A set of missense mutations in the gene encoding profilin-1 has been linked to the onset of familial forms of ALS (fALS), also known as Lou Gehrig’s disease. The pathogenic potential of these mutations is linked to the formation of intracellular inclu- sions of the mutant proteins and correlates with the mutation- induced destabilization of its native, fully folded state. However, the mechanism by which these mutations promote misfolding and self-assembly is yet unclear. Here, using temperature-jump and stopped-flow kinetic measurements, we show that, during refolding, WT profilin-1 transiently populates a partially folded (PF) state endowed with hydrophobic clusters exposed to the solvent and with no detectable secondary structure. We observed that this conformational state is marginally stable at neutral pH but becomes significantly populated at mildly acidic pH. Interestingly, the fALS-associated mutations did not cause a change in the refolding mechanism of profilin-1, but induced a stabilization of the PF state. In the presence of preformed pro- filin-1 aggregates, the PF state, unlike the unfolded and folded states, could interact with these aggregates via nonspecific hydrophobic interactions and also increase thioflavin-T fluores- cence, revealing its amyloidogenic potential. Moreover, in the variants tested, we found a correlation between conformational stability of PF and aggregation propensity, defining this con- formational state as an aggregation-prone folding intermedi- ate. In conclusion, our findings indicate that mutation-in- duced stabilization of a partially folded state can enhance profilin-1 aggregation and thereby contribute to the patho- genicity of the mutations.File | Dimensione | Formato | |
---|---|---|---|
Del Poggetto_Stability_2018
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.72 MB
Formato
Adobe PDF
|
1.72 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.