In this paper we derive a model for heat diffusion in a composite medium in which the different components are separated by thermally active interfaces. The previous result is obtained via a concentrated capacity procedure and leads to a non-stantard system of PDEs involving a Laplace-Beltrami operator acting on the interface. For such a system well-posedness is proved using contraction mapping and abstract parabolic problems theory. Finally, the exponential convergence (in time) of the solutions of our system to a steady state is proved.

Existence, uniqueness and concentration for a system of PDEs involving the Laplace-Beltrami operator / Amar, M.; Gianni, R.. - In: INTERFACES AND FREE BOUNDARIES. - ISSN 1463-9963. - STAMPA. - 21:(2019), pp. 41-59.

Existence, uniqueness and concentration for a system of PDEs involving the Laplace-Beltrami operator

M. Amar
;
2019

Abstract

In this paper we derive a model for heat diffusion in a composite medium in which the different components are separated by thermally active interfaces. The previous result is obtained via a concentrated capacity procedure and leads to a non-stantard system of PDEs involving a Laplace-Beltrami operator acting on the interface. For such a system well-posedness is proved using contraction mapping and abstract parabolic problems theory. Finally, the exponential convergence (in time) of the solutions of our system to a steady state is proved.
2019
Abstract parabolic equations; Laplace-Beltrami operator; concentration; time-asymptotic limit
01 Pubblicazione su rivista::01a Articolo in rivista
Existence, uniqueness and concentration for a system of PDEs involving the Laplace-Beltrami operator / Amar, M.; Gianni, R.. - In: INTERFACES AND FREE BOUNDARIES. - ISSN 1463-9963. - STAMPA. - 21:(2019), pp. 41-59.
File allegati a questo prodotto
File Dimensione Formato  
Amar_Existence_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 265.72 kB
Formato Adobe PDF
265.72 kB Adobe PDF   Contatta l'autore
Amar_Existence_2019.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 181.5 kB
Formato Adobe PDF
181.5 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1133550
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact