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Via A. Scarpa 16, 00161 Roma, Italy

micol.amar@sbai.uniroma1.it
Roberto Gianni

Dipartimento di Matematica ed Informatica
Universit̀a di Firenze

Via Santa Marta 3, 50139 Firenze, Italy
roberto.gianni@unifi.it

Abstract

In this paper we derive a model for heat diffusion in a composite medium in which the dif-
ferent components are separated by thermally active interfaces. The previous result is obtained
via a concentrated capacity procedure and leads to a non-stantard system of PDEs involving a
Laplace-Beltrami operator acting on the interface. For such a system well-posedness is proved
using contraction mapping and abstract parabolic problemstheory. Finally, the exponential con-
vergence (in time) of the solutions of our system to a steady state is proved.

2010 Mathematics Subject Classification:Primary 35K20; Secondary 35K90, 35B40.
Keywords: Abstract parabolic equations; Laplace-Beltrami operator; concentration; time-asymptotic
limit.

1 Introduction

In recent years there has been ongoing researches on new composite materials displaying more

efficient thermal dispersion properties. This is required in many branches of technical applications

in which some specific material characteristics, such as ductility, must be ensured together with an

efficient heat dispersion. For example, that is the case in the encapsulation of electronic devices ([12,

18, 22, 27]). Typically, in this situation, the desired material properties are obtained by embedding

some highly conductive nanoparticles in a rubber or polymerfoam. In such a way the composite

material retains the ductility of the host medium (say a rubber) and, hopefully, has an increased

heat conductivity (because of the highly conductive inclusions). It turns out that, indeed, this is the
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case and the presence of the inclusions can increase fivefoldconductivity. A similar situation is

encountered in some newly developed engine coolants in which conductive nanoparticles are added

to the fluid.

In some situations the embedded nanoparticles are covered by a membrane separating them from

the surrounding medium ([22]). Such a membrane can be build up from the very beginning in the

manufacture of the nanoparticles or, maybe, it can be a surfactant surrounding the particle which is

added to avoid clotting.

Motivated by the previous considerations we have decided toinvestigate the overall behaviour of

a composite material made of a hosting medium filled with nanoparticles enclosed in a membrane

with the aim of determining its effects on the resulting conductivity. This is done in [9, 10] by

means of a homogenization technique when the membrane is an(N − 1)-dimensional surface. This

approach is motivated by the obvious smallness of the thickness of the interfaces and leads to a

description of their thermal behaviour in which the temperature is continuous across the membrane

and solves a heat equation involving the Laplace-Beltrami operator having, as a source term, the

jump of the heat flux.

In this regard, it remains to prove well-posedness for the system of equations modelling heat

conduction in the composite materials with interfaces. At the same time, it is fundamental to provide

a theoretical motivation of this model regarded as a concentration limit of a thick membrane. This

paper is devoted to the proof of such results.

The main and most interesting feature of the well-posednesstheorem of this paper is due to the

fact that the system of PDE’s involves a Laplace-Beltrami equation coupled with the heat equation

in the surrounding media via the jump of the heat flux. A similar coupling on the boundary of the

domain has been studied by many authors. Among the very wide literature on this topic, relevant

papers are, for instance, [11, 20, 23, 26] (see also the references therein) for abstract parabolic

equations, and [13, 14, 16, 24] for the Cahn-Hilliard or Allen-Cahn equation. On the other hand, our

case differs from the previous ones since the coupling occurs on interfaces. Indeed, in our problem

an evolutive equations is satisfied on both sides of the interface where the dynamical condition

is assigned. The techniques of the previous papers are likely applicable to our case, nevertheless

we believe that the merit of our approach lies in its simplicity which takes advantage of the linear

structure of our system of equations. It is worthwhile to addthat such a system of equations is

interesting in itself and it calls for a careful tuning of theexistence theorem, via contraction mapping

and abstract parabolic problems theory as done, for instance, in [7].

The core part of the paper is devoted to the rigorous derivation of the phenomenological model

used in our previous papers [9, 10]. Obviously, in this framework, the relevant physical quantities

must be rescaled in a way such that they are conserved in the limit η → 0, η being the thickness of

the membrane. Our choice is to let the specific conductivity and capacity of the interface to blow up

asη−1. This is essential to allow thermal diffusion “along” the concentrated membrane, as required

by the fact that in the no-thickness interface model we have aLaplace-Beltrami equation on the



Existence, uniqueness and concentration 3

membrane.

In this framework, it is crucial to quote [20, 26], in which similar concentration results are

proved, for a wide class of general nonlinear parabolic problems. However, in those papers, after

concentration, only a domainΩ remains on whose boundary the “dynamical condition” is assigned;

while, in this paper, we find, also in the limit, two domains separated by an active interface, where

the two fluxes are coupled via a Laplace-Beltrami parabolic equation, as in [8].

On the other hand, scaling by the factorη should lead (as in [4]) to a concentrated model in

which no tangential diffusion takes place, while the temperature has a transversal jump (see, for

instance, [1, 2, 3, 5, 6] for a similar approach in the framework of electrical conduction). The proof

of the concentration result relies on suitable a-priori estimates and proper identification of the limit

function together with a description of the membrane in terms of proper curvilinear coordinates.

Finally, the last part of the paper is devoted to the study of the asymptotic properties of the

solutions. Namely, well posedness for an elliptic counterpart of our original problem is proved

together with the convergence in time of the solutions of theevolutive system of PDE’s to the

solution of such elliptic problem (as, for instance, in [15,21]).

Such a convergence is proved to be exponential provided the source terms do not depend on

time.

The paper is organized as follows: in Section 2 we recall the definition and some properties of

the tangential operators (gradient, divergence, Laplace-Beltrami operator), we state our geometrical

setting and we introduce our model. In Section 3 we prove the concentration result, while in Section

4 we prove the well-posedness for the concentrated problem.Finally, in Section 5, we prove the

time-asymptotic result.

2 Preliminaries

2.1 Tangential derivatives

Let φ be aC2-function,Φ be aC2-vector function andS a smooth surface inRN with normal unit

vectorn. We recall that the tangential gradient ofφ onS is given by

∇Bφ = ∇φ− (n · ∇φ)n (2.1)

and the tangential divergence ofΦ onS is given by

divB Φ = divB (Φ− (n ·Φ)n) = div (Φ− (n ·Φ)n)

= divΦ− (n · ∇Φi)ni − (div n)(n ·Φ) , (2.2)

where, taking into account the smoothness ofS, the normal vectorn can be naturally defined in a

small neighborhood ofS as ∇d
|∇d|

, whered is the signed distance fromS. Moreover, we define as
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usual the Laplace-Beltrami operator as

∆Bφ = divB(∇Bφ) . (2.3)

Finally, we recall that on a regular surfaceS with no boundary (i.e. when∂S = ∅) we have
∫

S

divB Φ dσ = 0 . (2.4)

2.2 Geometrical setting

Let Ω be a given open, connected and bounded subset ofR
N with Lipschitz boundary, such that

Ω = Ωint ∪ Ωout ∪ Γ , Ωint andΩout are two disjoint open subsets ofΩ, Ωout is connected,Γ =

∂Ωint = ∂Ωout ∩ Ω, Γ ∩ ∂Ω = ∅ and we assume thatΓ is of classC∞. Let νΩ denote the normal

unit vector toΓ pointing intoΩout and[u] be the jump ofu acrossΓ as defined in (2.16).

Actually, in the physical framework, the interface is not an(N − 1)-dimensional surface but it

has a very small positive thickness. Hence, we need also to consider a more physical setting, in

which it appears a small parameter which takes into account the thickness of the physical interface.

To this purpose, forη > 0, let us writeΩ also asΩ = Ωη ∪Γ η ∪ ∂Γ η , whereΩη andΓ η are two

disjoint open subsets ofΩ, Γ η is the tubular neighborhood ofΓ with thicknessη, and∂Γ η is the

boundary ofΓ η. Moreover, we assume also thatΩη = Ωη
int ∪ Ωη

out, whereΩη
out, Ω

η
int correspond to

the external region and to the internal one, respectively, and∂Γ η = (∂Ωη
int∪∂Ωη

out)∩Ω. We assume

that, forη → 0 fixed, |Γ η| ∼ η|Γ |N−1.

η

Γ

δΓη

Γ

Ω int

η

Ω
η

out

Γη

Ω int

Ωout

Figure 1:Left : before concentration;Γ η is the dark grey region,Ωη
int is the white region andΩη

out is
the light grey region.Right: after concentration;Γ η shrinks toΓ asη → 0, Ωint is the white region
andΩout is the light grey region.

We stress the fact that the appearance of the small parameterη calls for a limit procedure; i.e.,

the concentration of the thick membraneΓ η, in order to replace it with the(N − 1)-dimensional

surfaceΓ , then simplifying the geometry of the problem.
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We will also use the following notation. LetT > 0 be a given time, for any spatial domainG,

we will denote byGT = G× (0, T ) the corresponding space-time cylindrical domain.

2.3 Position of the problem

In this subsection, we give a complete formulation of the problems stated in the Introduction. We

will present both the physical problem involving the thick membrane and the concentrated version

involving only the(N −1)-dimensional interface. It will be the purpose of next section to show that

the concentration limit (η → 0) of the physical model actually gives rise to the interface problem.

We first state the physical problem in the framework of thin membranes. To this purpose, let

µint, µout, α be strictly positive constants. Assume thatA,B ∈
(
L∞(Ω)

)N×N
are symmetric matrices

satisfying

A(x)ξ · ξ ≥ γA|ξ|2 , for a.e.x ∈ Ω and everyξ ∈ R
N ; (2.5)

B(x)ξ · ξ ≥ γB|ξ|2 , for a.e.x ∈ Ω and everyξ ∈ R
N , (2.6)

for suitable constantsγA, γB > 0.

We setaη(x) = µint in Ωη
int, a

η(x) = µout in Ωη
out, a

η(x) = α/η in Γ η, Aη(x) = A in Ωη
int ∪ Ωη

out,

Aη(x) = η−1B in Γ η.

A meaningful case in the applications is the one in whichA is a multiple of the identity by means

of a scalar functionλ : Ω → R
+ such that

λ = λint in Ωint, λ = λout in Ωout,

andB = βI, whereI denotes the identity matrix andβ > 0 (see for instance [3, 10]).

Let u0 ∈ L2(Ω), f, g ∈ L2(ΩT ) and set

f η(x, t) =





f(x, t) if (x, t) ∈ Ωη × (0, T );
1

η
g(x, t) if (x, t) ∈ Γ η × (0, T ).

For everyη > 0, we consider the problem foruη(x, t) ∈ L2
(
0, T ;H1

0(Ω)
)

given by

aη
∂uη

∂t
− div(Aη∇uη) = f η , in ΩT ; (2.7)

uη(x, t) = 0 , on∂Ω × (0, T ); (2.8)

uη(x, 0) = u0(x) , in Ω; (2.9)

which has the following standard weak formulation

−
∫ T

0

∫

Ω

aηuη
∂φ

∂t
dxdt+

∫ T

0

∫

Ω

Aη∇uη · ∇φ dxdt =
∫

Ω

aηu0φ(0) dx+
∫ T

0

∫

Ω

f ηφ dxdt , (2.10)
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for every test functionφ ∈ C∞(ΩT ) such thatφ has compact support inΩ for every t ∈ (0, T )

andφ(·, T ) = 0 in Ω. Clearly, for any givenη > 0, problem (2.7)–(2.9) (or (2.10)) is a classical

parabolic problem and hence it has a unique solutionuη(t) ∈ L2
(
0, T ;H1

0(Ω)
)
∩C0

(
[0, T ];L2(Ω)

)
.

Now, let us state the mathematical concentrated problem. Tothis purpose, we defineµ asµ = µint

in Ωint andµ = µout in Ωout. We assume also thatB ∈ L∞(Γ ) and satisfies (2.6) for a.e.x ∈ Γ ,

u0 ∈ L2(Γ ) andg ∈ L2(ΓT ). We consider the problem foru(x, t) given by

µ
∂u

∂t
− div(A∇u) = f , in ΩT ; (2.11)

[u] = 0 , onΓT ; (2.12)

α
∂u

∂t
− divB(B∇Bu) = [A∇u · ν] + g , onΓT ; (2.13)

u(x, t) = 0 , on∂Ω × (0, T ); (2.14)

u(x, 0) = u0(x) , in Ω, (2.15)

where we denote

[u] = uout− uint , (2.16)

and the same notation is employed also for other quantities.Here the operatorsdiv and∇, as well

asdivB and∇B, act only with respect to the space variablex.

Since problem (2.11)–(2.15) is not standard, in order to define a proper notion of weak solution,

we will need to introduce some suitable function spaces. To this purpose and for later use, we will

denote byH1
B(Γ ) the space of Lebesgue measurable functionsu : Γ → R such thatu ∈ L2(Γ ),

∇Bu ∈ L2(Γ ), endowed with the natural norm

‖u‖2H1
B(Γ ) =

∫

Γ

u2 dσ +

∫

Γ

|∇Bu|2 dσ . (2.17)

Let us also set

X0(Ω) := {u ∈ H1
0 (Ω) : tr

∣∣
Γ
(u) ∈ H1

B(Γ )} . (2.18)

We note thatX0(Ω) is a Hilbert space endowed with the scalar product given by

〈u, v〉X0(Ω) =

∫

Ω

uv dx+
∫

Ω

∇u · ∇v dx+
∫

Γ

uv dσ +

∫

Γ

∇Bu · ∇Bv dσ , (2.19)

for all u, v ∈ X0(Ω), where, for the sake of brevity, we identifyu andv with their traces in the last

two integrals of (2.19). Indeed, the only delicate point is to prove completeness. On the other hand,

this last property is guaranteed by the continuity of the traces and by the completeness ofH1
0 (Ω)

andH1
B(Γ ), which assure that a Cauchy sequence{un} ∈ X0(Ω) is such thatun → u strongly

in H1
0 (Ω) and alsotr

∣∣
Γ
(un) → w strongly inH1

B(Γ ). Moreover,tr
∣∣
Γ
(un) → tr

∣∣
Γ
(u) strongly in

L2(Γ ) because of standard trace properties; hence,tr
∣∣
Γ
(u) = w and thusu ∈ X0(Ω).
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Definition 2.1. We say thatu ∈ L2
(
0, T ;X0(Ω)

)
is a weak solution of problem (2.11)–(2.15) if

−
∫ T

0

∫

Ω

µu
∂φ

∂τ
dxdτ +

∫ T

0

∫

Ω

A∇u · ∇φ dxdτ

− α
∫ T

0

∫

Γ

u
∂φ

∂τ
dσ dτ +

∫ T

0

∫

Γ

B∇Bu · ∇Bφ dσ dτ

=

∫

Ω

µu0φ(x, 0) dx+ α

∫

Γ

u0φ(x, 0) dσ +

∫ T

0

∫

Ω

fφ dxdτ +
∫ T

0

∫

Γ

gφ dσ dτ , (2.20)

for every test functionφ ∈ C∞(ΩT ) such thatφ has compact support inΩ for everyt ∈ (0, T ) and

φ(·, T ) = 0 in Ω.

We will prove in Section 4 that problem (2.11)–(2.15) admitsa unique solutionu ∈ L2
(
0, T ;X0(Ω)

)
∩

C0
(
[0, T ];L2(Ω) ∩ L2(Γ )

)
.

3 Derivation of the concentrated problem

In this Section we will also assume that the initial datumu0 ∈ W 1,∞(Ω) and that the sourceg ∈
L2
(
0, T ;W 1,∞(Ω)

)
. First we note that, by an integration by parts, one can derive from (2.10) the

energy inequality

sup
t∈(0,T )

∫

Ωη
out∪Ω

η
int

(uη)2(t) dx+ sup
t∈(0,T )

1

η

∫

Γ η

(uη)2(t) dx

+

∫ T

0

∫

Ωη
out∪Ω

η
int

|∇uη|2 dxdτ +
1

η

∫ T

0

∫

Γ η

|∇uη|2 dxdτ ≤ γ , (3.1)

whereγ depends onµint, µout, α, γA, γB, |Ω|, |G|, ‖u0‖L∞(Ω), ‖f‖L2(ΩT ), ‖g‖L2(0,T ;L∞(Γ )), but not on

η. As a consequence, asη → 0, we may assume, extracting a subsequence if needed,

uη ⇀ u ,∇uη ⇀ ∇u , weakly inL2(ΩT ),

whereu ∈ L2
(
0, T ;H1

0(Ω)
)
. We characterizeu in Theorem 3.1 as the solution of the concentrated

differential problem (2.11)–(2.15).

In order to proceed with the concentration of problem (2.7)–(2.9), we need to choose a suitable

testing function in the weak formulation (2.10), before passing to the limit forη → 0. To this

purpose we recall that there exists anη0 > 0, such that forη < η0, the application

ψ : Γ × [−η, η]→ Γ 2η , ψ(y
Γ
, r) = y

Γ
+ rν(y

Γ
) = y ∈ Γ 2η

is a diffeomorfism onto its image, where we denote byΓ 2η the tubolar neighborhood ofΓ with

thickness2η. Clearly,Γ 2η can be considered as the union of surfaces denoted byΓr parallel toΓ

and at distance|r| from it, whenr varies in [−η, η]. Hence, fory ∈ Γ 2η, there exists a unique



8 M. Amar and R. Gianni

(y
Γ
, r) ∈ Γ × [η, η] such thaty = y

Γ
+ rν(y

Γ
) and theny ∈ Γr andν(y

Γ
) coincides with the

normal to the surfaceΓr aty. Moreover, we can locally parametrizeΓ in such a way that there exist

Γ̂ ⊂ R
N−1 andy

Γ
: Γ̂ → Γ such thatΓ ∋ y

Γ
= y

Γ
(ξ), whereξ = (ξ1, . . . , ξN−1) ∈ Γ̂ and, if

we set dσ =
√
g(ξ)dξ, we may assume thatγ1 ≤

√
g(ξ) ≤ γ2, for everyξ ∈ Γ̂ , whereγ1, γ2 are

suitable strictly positive constants. As a consequence, wehave obtained a change of coordinates in

R
N , whose Jacobian matrix will be denoted byJ(ξ, r), defined by

Γ 2η ∋ y = (y1, . . . , yN)←→ (ξ, r) = (ξ1, . . . , ξN−1, r) ∈ Γ̂ × [−η, η] .

By the assumed regularity ofΓ , it follows thatJ(ξ, r) = J(ξ, 0)+Mη, whereMη denotes a suitable

matrix such that|Mη| ≤ γη, so that|detJ(ξ, r)| = |detJ(ξ, 0)|+ Rη, where|Rη| ≤ γη; moreover,

by the choice of the coordinates(ξ, r), we have that|det
(
J(ξ, 0)

)
| =

√
g(ξ) (recall that the volume

element dy = |det
(
J(ξ, r)

)
| dξ dr for r = 0, i.e. onΓ , becomes dy = |det

(
J(ξ, 0)

)
| dξ dr =

dσ dr =
√
g(ξ)dξ dr).

Finally we sety
Γ
= π0(y), i.e. the orthogonal projection ofy ∈ Γ 2η on Γ , r = ρ(y), i.e. the

signed distance ofy ∈ Γ 2η from Γ ; note that|∇ρ(y)| is bounded.

In the sequel, we assume without loss of generality that the support of our testing functions is

sufficiently small to allow for the representation introduced above. The general case can then be

recovered by means of a standard partition of unity argument. Moreover, for the sake of brevity, we

will use the same symbol for the same function even if writtenwith respect to different variables.

Theorem 3.1.Assume thatu0 ∈ W 1,∞(Ω), f ∈ L2(ΩT ), g ∈ L2
(
0, T ;W 1,∞(Ω)

)
, B = bI, where

I is the identity matrix,b ∈ L∞(Γ ), b(x) ≥ γB, for a.e.x ∈ Γ , and it is extended to the whole

of Γ 2η asb(y) = b(π0(y)). Then, forη → 0, uη ⇀ u weakly inL2
(
0, T ;H1

0(Ω)
)
, whereu is the

solution of problem (2.20).

Proof. Let ϕ ∈ C∞(ΩT ) such thatϕ has compact support (sufficiently small) inΩ for everyt ∈
(0, T ) andϕ(·, T ) = 0 in Ω, be the general testing function for the concentrated problem (2.11)–

(2.15). Starting fromϕ, we construct a suitable test functionϕη for problem (2.10) in such a way

that it does not depend on the transversal coordinate insideΓ η (being constantly equal to its value

onΓ ) and it is linearly connected withϕ in Ωη
int andΩη

out along ther-direction. It is crucial in order

to develop the concentration procedure to make this glueingwhere the diffusivity in equation (2.7)

is stable with respect toη, i.e. inside the setΓ 2η \ Γ η ⊂ Ωη
int ∪ Ωη

out. To this purpose, define

ϕη(y, t) =





ϕ(y, t) if (y, t) ∈ (Ωη
out \ Γ 2η)× (0, T );

ϕη
out(y, t) if (y, t) ∈ (Ωη

out∩ Γ 2η)× (0, T );

ϕ
(
π0(y), t

)
if (y, t) ∈ Γ η × (0, T );

ϕη
int(y, t) if (y, t) ∈ (Ωη

int ∩ Γ 2η)× (0, T );

ϕ(y, t) if (y, t) ∈ (Ωη
int \ Γ 2η)× (0, T );

(3.2)
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where

ϕη
out(y, t) =

[
ϕ
(
π0(y) + ην(π0(y)), t

)
− ϕ

(
π0(y), t

)]2ρ(y)− η
η

+ ϕ
(
π0(y), t

)

and

ϕη
int(y, t) =

[
ϕ
(
π0(y), t

)
− ϕ

(
π0(y) − ην(π0(y)), t

)]2ρ(y) + η

η
+ ϕ

(
π0(y), t

)
.

Note that the linearity is intended with respect toρ(y). By a density argument, we can useϕη as a

testing function in (2.10); then, it follows

−
∫ T

0

∫

(Ωη
int∪Ω

η
out)\Γ

2η

µuη
∂ϕ

∂τ
dy dτ − α

η

∫ T

0

∫

Γ η

uη
∂ϕ
(
π0(y), τ

)

∂τ
dy dτ

−
∫ T

0

∫

Ωη
int∩Γ

2η

µuη
∂ϕη

int

∂τ
dy dτ −

∫ T

0

∫

Ωη
out∩Γ

2η

µuη
∂ϕη

out

∂τ
dy dτ

+

∫ T

0

∫

(Ωη
int∪Ω

η
out)\Γ

2η

A∇uη · ∇ϕ dy dτ +
1

η

∫ T

0

∫

Γ η

B∇uη · ∇ϕ
(
π0(y), τ

)
dy dτ

+

∫ T

0

∫

Ωη
int∩Γ

2η

A∇uη · ∇ϕη
int dy dτ +

∫ T

0

∫

Ωη
out∩Γ

2η

A∇uη · ∇ϕη
out dy dτ

=

∫

(Ωη
int∪Ω

η
out)\Γ

2η

µu0ϕ(y, 0) dy +
α

η

∫

Γ η

u0ϕ
(
π0(y), 0

)
dy +

∫

Ωη
int∩Γ

2η

µu0ϕ
η
int(y, 0) dy

+

∫

Ωη
out∩Γ

2η

µu0ϕ
η
out(y, 0) dy +

∫ T

0

∫

(Ωη
int∪Ω

η
out)\Γ

2η

fϕ dy dτ +
1

η

∫ T

0

∫

Γ η

gϕ
(
π0(y), τ

)
dy dτ

+

∫ T

0

∫

Ωη
int∩Γ

2η

fϕη
int dy dτ +

∫ T

0

∫

Ωη
out∩Γ

2η

fϕη
out dy dτ . (3.3)

Due to estimate (3.1) and taking into account that

∇ϕη
out(y, t) = ℑ(η) +

[
ϕ
(
π0(y) + ην(π0(y)), t

)
− ϕ

(
π0(y), t

)]2∇ρ(y)
η

where withℑ(η) we denote a bounded quantity with respect toη (clearly, the same holds forϕη
int)

and
∣∣∣
[
ϕ
(
π0(y) + ην(π0(y)), t

)
− ϕ

(
π0(y), t

)]∣∣∣ ≤ γη , (3.4)

with γ independent ofη, it is easy to see that whenη → 0, the second, the fourth, the sixth and the
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eighth line in the equality (3.3) tend to0; moreover,

∫ T

0

∫

(Ωη
int∪Ω

η
out)\Γ

2η

µuη
∂ϕ

∂t
dy dτ →

∫ T

0

∫

Ωint∪Ωout

µu
∂ϕ

∂t
dy dτ ,

∫ T

0

∫

(Ωη
int∪Ω

η
out)\Γ

2η

A∇uη · ∇ϕ dy dτ →
∫ T

0

∫

Ωint∪Ωout

A∇u · ∇ϕ dy dτ ,

∫

(Ωη
int∪Ω

η
out)\Γ

2η

µu0ϕ(y, 0) dy →
∫

Ωint∪Ωout

µu0ϕ(y, 0) dy ,

∫ T

0

∫

(Ωη
int∪Ω

η
out)\Γ

2η

fϕ dy dτ →
∫ T

0

∫

Ωint∪Ωout

fϕ dy dτ .

Finally, by the properties of the traces, it is not difficult to get also

α

η

∫ T

0

∫

Γ η

uη
∂ϕ
(
π0(y), τ

)

∂τ
dy dτ = α

∫ T

0

[
1

η

∫

Γ η

uη
∂ϕ
(
π0(y), τ

)

∂τ
dy

]
dτ → α

∫ T

0

∫

Γ

u
∂ϕ

∂τ
dσ dτ

α

η

∫

Γ η

u0ϕ
(
π0(y), 0

)
dy = α

[
1

η

∫

Γ η

u0ϕ
(
π0(y), 0

)
dy

]
→ α

∫

Γ

u0ϕ(y, 0) dσ

1

η

∫ T

0

∫

Γ η

gϕ
(
π0(y), τ

)
dy dτ =

∫ T

0

[
1

η

∫

Γ η

gϕ
(
π0(y), τ

)
dy

]
dτ →

∫ T

0

∫

Γ

gϕ dy dτ .

Hence the crucial limit is the sixth one in (3.3). To deal withthis limit, we pass to the new coor-

dinates(ξ, r) defined above, recalling thatJ(ξ, r) denotes the Jacobian matrix of such a change

of coordinates. Moreover, denoting by∇B
Γr

the tangential gradient with respect to the surfaceΓr

and recalling that the normal vector aty ∈ Γr coincides with the normal atπ0(y) ∈ Γ , we have

∇B
Γr
uη = ∇uη − (ν(π0(y)) · ∇uη)ν(π0(y)), with r = ρ(y). Also, since the test function does not

depend on the normal coordinater in Γ η, we have that∇ϕ(π0(y), t) = ∇Bϕ(π0(y), t) and hence

∇ϕ · ∇uη = ∇Bϕ · ∇B
Γρ(y)

uη. Then, setting for the sake of simplicitỹJ(ξ) := J̃(ξ, 0) and taking

into account the scalar nature ofB, we can rewrite

1

η

∫ T

0

∫

Γ η

B
(
π0(y)

)
∇uη · ∇ϕ

(
π0(y), τ

)
dy dτ

=
1

η

∫ T

0

∫

Γ η

b
(
π0(y)

)
∇Bϕ

(
π0(y), τ

)
· ∇B

Γρ(y)
uη dy dτ

=
1

η

∫ T

0

∫

Γ̂

∫ η/2

−η/2

b(ξ, 0)(J̃(ξ, r)∇ξϕ(ξ, 0, τ))
T J̃(ξ, r)∇ξu

η|detJ(ξ, r)| dξ dr dτ

=:I1(η) + I2(η) ,

where

I1(η) :=

∫ T

0

∫

Γ̂

b(ξ, 0)
(
J̃(ξ)∇ξϕ

(
ξ, 0, τ

))T
(
1

η

∫ η/2

−η/2

J̃(ξ)∇ξu
η
(
ξ, r, τ

)
dr

)
√
g(ξ)dξ dτ
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andI2(η) is the remaining part. Here,̃J(ξ, r) is the rectangular matrix such that, for every function

v(y), J̃(ξ, r)∇ξv(ξ, r) = ∇B
Γρ(y)

v(y), and the supscriptT denotes the transposed vector. Obviously,

due to the regularity ofΓ , also the matrix̃J is regular, so that̃J(ξ, r) = J̃(ξ, 0) +O(η).

Clearly, using the energy estimate (3.1),

|I2(η)| ≤ γ
η√
η

(
1

η

∫ T

0

∫

Γ η

|∇uη|2 dy dτ

)1/2√
η ≤ γη → 0 asη → 0.

On the other hand, by Holder’s inequality and again the energy estimate (3.1), it follows that
1
η

∫ η/2

−η/2
J̃(ξ)∇ξu

η
(
ξ, r, τ

)
dr is bounded uniformly with respect toη so that there exists a vector

functionV ∈ L2(0, T ;L2(Γ̂ )) such that, up to a subsequence,

1

η

∫ η/2

−η/2

J̃(ξ)∇ξu
η(ξ, r, τ) dr ⇀ V , weakly inL2(0, T ;L2(Γ̂ )).

Hence, we obtain

I1(η) =

∫ T

0

∫

Γ̂

b(ξ, 0)
(
J̃(ξ)∇ξϕ

(
ξ, 0, τ

))T
(
1

η

∫ η/2

−η/2

J̃(ξ)∇ξu
η
(
ξ, r, τ

)
dr

)
√
g(ξ)dξ dτ

→
∫ T

0

∫

Γ̂

b(ξ, 0)
(
J̃(ξ)∇ξϕ(ξ, 0, τ)

)T
V

√
g(ξ)dξ dτ =

∫ T

0

∫

Γ

b∇Bϕ ·V dσ dτ .

It remains to identifyV as the tangential gradient of the limitu; i.e.,V = ∇Bu onΓ . To this aim

we consider a vector test functionΨ ∈ C1c (ΩT ); we obtain

∫ T

0

∫

Γ

divB Ψ u dσ dτ ←−
∫ T

0

∫

Γ

divB Ψ

(
1

η

∫ η/2

−η/2

uη(y
Γ
+ rν(y

Γ
), τ) dr

)
dσ dτ

= −
∫ T

0

∫

Γ

Ψ · ∇B

(
1

η

∫ η/2

−η/2

uη(y
Γ
+ rν(y

Γ
), τ) dr

)
dσ dτ

= −
∫ T

0

∫

Γ̂

Ψ ·
(
1

η

∫ η/2

−η/2

J̃(ξ)∇ξu
η(ξ, r, τ) dr

)
√
g(ξ)dξ dτ

−→ −
∫ T

0

∫

Γ̂

Ψ ·V
√
g(ξ)dξ dτ = −

∫ T

0

∫

Γ

Ψ ·V dσ dτ ,

which implies thatV = ∇Bu. This proves that the limit forη → 0 of equality (3.3) gives rise to

(2.20), whereB = bI; i.e., the concentration limit ofuη is the weak solution of system (2.11)–

(2.15).

Remark 3.2. Notice that, even if in the physical applications we have in mind the capacitive coeffi-

cientsµ andα are constant in each phase (see [9, 10]), the results in Theorem 3.1 can be generalized

to the case in whichµ ∈ L∞(Ω) andα ∈ L∞(Γ ), with µ(x) ≥ µ0 a.e. inΩ andα(x) ≥ α0 a.e. on

Γ , for proper constantsµ0, α0 > 0. In this case, we assume thatµ andα are extended to the whole

of Γ 2η constantly along the transversal direction; i.e.µ(y) = µ(π0(y)) andα(y) = α(π0(y)).
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4 Well-posedness of the concentrated problem

In this section we consider the following nonlinear versionof problem (2.11)–(2.15)

∂u

∂t
− div(A∇u) = f(x, t, u) , in (Ωint ∪ Ωout)× (0, T ); (4.1)

[u] = 0 , onΓT ; (4.2)
∂u

∂t
− divB(B∇Bu) = [A∇u · ν] + g(x, t, u) , onΓT ; (4.3)

u(x, t) = 0 , on∂Ω × (0, T ); (4.4)

u(x, 0) = u0(x) , in Ω, (4.5)

where, with no loss of generality, we have assumed thatµint = µout = α = 1 (see Remark 4.3

below). The weak formulation of the previous problem is clearly the same as in (2.20), replacingf

andg with their nonlinear versions.

The main result of this section is the following theorem.

Theorem 4.1.LetA ∈
(
L∞(Ω)

)N×N
be a symmetric matrix satisfying (2.5) andB ∈

(
L∞(Γ )

)N×N

be a symmetric matrix satisfying

B(x)ξ · ξ ≥ γB|ξ|2 , for a.e.x ∈ Γ and everyξ ∈ R
N . (4.6)

Assume thatu0 ∈ H1
0 (Ω). Assume also thatf ∈ L2

(
ΩT ; C0(R)

)
andg ∈ L2

(
ΓT ; C0(R)

)
are two

given functions such that there existℓf , ℓg > 0 with

|f(x, t, s1)−f(x, t, s2)| ≤ℓf |s1−s2| , for a.e.(x, t) ∈ ΩT and∀s1, s2∈R; (4.7)

|g(x, t, r1)−g(x, t, r2)| ≤ℓg|r1−r2| , for a.e.(x, t) ∈ ΓT and∀r1, r2∈R. (4.8)

Then problem (4.1)–(4.5) admits a unique solutionu ∈ L2
(
0, T ;X0(Ω)

)
∩ C0

(
[0, T ];L2(Ω) ∩

L2(Γ )
)
.

In order to achieve this result, we first prove the well-posedness of a linear version of problem

(2.11)–(2.15); i.e.,

∂u

∂t
− div(A∇u) = f(x, t) , in (Ωint ∪Ωout)× (0, T ); (4.9)

[u] = 0 , onΓT ; (4.10)
∂u

∂t
− divB(B∇Bu) = [A∇u · ν] + g(x, t) , onΓT ; (4.11)

u(x, t) = 0 , on∂Ω × (0, T ); (4.12)

u(x, 0) = u0(x) , in Ω. (4.13)

Theorem 4.2. Let A ∈
(
L∞(Ω)

)N×N
andB ∈

(
L∞(Γ )

)N×N
be two given symmetric matrices

satisfying (2.5) and (4.6), respectively. Assume thatu0 ∈ H1
0 (Ω), f ∈ L2(ΩT ), g ∈ L2(ΓT ). Then

problem (4.9)–(4.13) admits a unique solutionu ∈ L2
(
0, T ;X0(Ω)

)
∩ C0

(
[0, T ];L2(Ω) ∩ L2(Γ )

)
.
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Proof. Let us consider problem (4.9)–(4.13) in an abstract parabolic setting, as for instance in [25]

and [28]. To this purpose, let us set

H = {û := (u, ũ) ∈ L2(Ω)× L2(Γ )} ,
V = {û := (u, ũ) ∈ H1

0 (Ω)×H1
B(Γ ) , ũ = tr

∣∣
Γ
(u)} ;

(4.14)

and notice thatH andV are Hilbert spaces if we define

〈û, v̂〉H =

∫

Ω

uv dx+
∫

Γ

ũṽ dσ ;

〈û, v̂〉V = 〈û, v̂〉H +

∫

Ω

∇u · ∇v dx+
∫

Γ

∇Bũ · ∇Bṽ dσ

=

∫

Ω

uv dx+
∫

Γ

ũṽ dσ +

∫

Ω

∇u · ∇v dx+
∫

Γ

∇Bũ · ∇B ṽ dσ .

(4.15)

Indeed,H is a product of two Hilbert spaces andV , which is a linear space strictly contained in

H1
0 (Ω)×H1

B(Γ ), is complete and hence a Hilbert space, too. The completeness ofV is obtained as

done in Subsection 2.3 below formula (2.19).

Moreover,V ⊂ H with compact and dense injection. Define also the bilinear and symmetric

form a : V × V → R as

a(û, v̂) =

∫

Ω

A∇u · ∇v dx+
∫

Γ

B∇Bũ · ∇Bṽ dσ , (4.16)

which satisfies

|a(û, v̂)| ≤ C
(
‖∇u‖L2(Ω)‖∇v‖L2(Ω) + ‖∇Bũ‖L2(Γ )‖∇Bṽ‖L2(Γ )

)
≤ C‖û‖V ‖v̂‖V ,

a(û, û) ≥ c
(
‖∇u‖2L2(Ω) + ‖∇Bũ‖2L2(Γ )

)
≥ c‖û‖2V ,

(4.17)

where we use both the Poincaré and the trace inequalities and c, C are positive constants depending

onΩ, Γ , γA, γB, ‖A‖∞ and‖B‖∞. Indeed, sinceu ∈ H1
0 (Ω) andũ = tr

∣∣
Γ
(u), the norm‖∇u‖L2(Ω)

controls both‖u‖L2(Ω) and‖ũ‖L2(Γ ). Hence,a is a continuous and coercive bilinear form onV ×V .

Now, let us rewrite problem (2.11)–(2.15) in the following abstract form:

find û ∈ L2(0, T ;V ) ∩ C0([0, T ];H) such that̂u(0) = u0 and

d

dt
〈û(t), φ̂〉H + a(û(t), φ̂) = 〈F̂ (t), φ̂〉H , ∀φ̂ ∈ V (4.18)

in the sense of distribution in(0, T ), where we set̂F (t) =
(
f(·, t), g(·, t)

)
∈ H. Indeed, the weak

formulation (2.20) coincides with the distributional formulation of the abstract parabolic equation

in (4.18), when we take into account the density of the test functions inL2
(
0, T ;V

)
∩C0

(
[0, T ];H

)
.

By [25, Theorem 7.2.1] problem (4.18) admits a unique solution and this concludes the proof.

Proof of Theorem 4.1.Let us consider the spaceS = L2(ΩT )×L2(ΓT ), endowed with the norm

‖(s, s̃)‖S =
√
‖s‖2L2(ΩT ) + ‖s̃‖2L2(ΓT ) , whereT ≤ T will be chosen later. Let us define the operator
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L : S → S asL(s, s̃) = (r, r̃) wherer ∈ L2
(
0, T ;X0(Ω)

)
∩ C0

(
[0, T ];L2(Ω) ∩ L2(Γ )

)
is the

unique solution of (4.9)–(4.13) withf, g replaced byf(x, t, s(x, t)) andg(x, t, s̃(x, t)), respectively,

andr̃ = r |ΓT
.

We claim that, ifT is chosen sufficiently small depending onγA, γB, ℓf , ℓg, but not on the initial

datumu0, then the operatorL is a contraction mapping. Indeed, setting(R, R̃) = (r1−r2, r̃1− r̃2) ∈
S, where(ri, r̃i) = L(si, s̃i), i = 1, 2, we obtain thatR satisfies

∂R

∂t
− div(A∇R) = f(x, t, s1)− f(x, t, s2) , in (Ωint ∪Ωout)× (0, T ); (4.19)

[R] = 0 , onΓT ; (4.20)
∂R

∂t
− divB(B∇BR) = [A∇R · ν] + g(x, t, s̃1)− g(x, t, s̃2) , onΓT ; (4.21)

R(x, t) = 0 , on∂Ω × (0, T ); (4.22)

R(x, 0) = 0 , in Ω. (4.23)

Hence, multiplying (4.19) byR, integrating by parts inΩT , and taking into account (4.20)–(4.23),

we obtain

sup
(0,T )

∫

Ω

R2(t) dx+ sup
(0,T )

∫

Γ

R2(t) dσ +

∫ T

0

∫

Ω

|∇R|2 dxdτ +
∫ T

0

∫

Γ

|∇BR|2 dσ dτ

≤ γ

(∫ T

0

∫

Ω

[f(x, t, s1)− f(x, t, s2)]R dxdτ +
∫ T

0

∫

Γ

[g(x, t, s̃1)− g(x, t, s̃2)]R dσ dτ

)

≤ γ

(
ℓf

∫ T

0

∫

Ω

(s1 − s2)R dxdτ + ℓg

∫ T

0

∫

Γ

(s̃1 − s̃2)R dσ dτ

)

≤ γ

(
ℓf
2
‖s1 − s2‖2L2(ΩT ) +

ℓf
2
‖R‖2L2(ΩT ) +

ℓg
2
‖s̃1 − s̃2‖2L2(ΓT ) +

ℓg
2
‖R‖2L2(ΓT )

)
, (4.24)

whereγ = 1
min(2−1,γA,γB)

. Dropping the last two integrals in the first line of (4.24) and integrating in

(0, T ) we get

∫ T

0

∫

Ω

R2(τ) dxdτ +
∫ T

0

∫

Γ

R2(τ) dσ dτ

≤ γ

2
max(ℓf , ℓg)T

(
‖s1 − s2‖2L2(ΩT ) + ‖R‖2L2(ΩT ) + ‖s̃1 − s̃2‖2L2(ΓT ) + ‖R‖2L2(ΓT )

)
. (4.25)

Now, choosingT = 1
2γmax(ℓf ,ℓg)

, after simple computations, it follows

∫ T

0

∫

Ω

R2 dxdτ +
∫ T

0

∫

Γ

R2 dσ dτ ≤ 1

3

(
‖s1 − s2‖2L2(ΩT ) + ‖s̃1 − s̃2‖2L2(ΓT )

)
, (4.26)

which implies

‖L(s1, s̃1)− L(s2, s̃2)‖S = ‖(R, R̃)‖S ≤
1√
3
‖(s1 − s2, s̃1 − s̃2)‖S . (4.27)
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Hence the claim is proved. Therefore, by the Contraction Mapping Theorem there exists a unique

fixed point ofL in S given by(u |ΩT
, u |ΓT

), whereu ∈ L2
(
0, T ;X0(Ω)

)
∩ C0

(
[0, T ];L2(Ω) ∩

L2(Γ )
)

and satisfies

∂u

∂t
− div(A∇u) = f(x, t, u) , in (Ωint ∪ Ωout)× (0, T ); (4.28)

[u] = 0 , onΓ × (0, T ); (4.29)
∂u

∂t
− divB(B∇Bu) = [A∇u · ν] + g(x, t, u) , onΓ × (0, T ); (4.30)

u(x, t) = 0 , on∂Ω × (0, T ); (4.31)

u(x, 0) = u0 , in Ω. (4.32)

SinceT is independent of the initial datumu0, the previous procedure can be iterated step by step

in intervals with amplitudeT , thus covering the whole time interval(0, T ) in the statement of the

theorem. �

Remark 4.3. Notice that the results in Theorems 4.1 and 4.2 can be generalized to the case in which

capacitive coefficientsµ ∈ L∞(Ω) andα ∈ L∞(Γ ) (with µ(x) ≥ µ0 a.e. inΩ andα(x) ≥ α0 a.e.

onΓ , for proper constantsµ0, α0 > 0) appear in front of the time derivative in (4.1) (or in (4.9))and

in (4.3) (or in (4.11)). Indeed it is enough to redefine in the proof of Theorem 4.2 the scalar product

on the spaceH as

〈û, v̂〉H =

∫

Ω

µ(x)uv dx+
∫

Γ

α(x)ũṽ dσ .

5 Time-asymptotic limit

In this section we will prove that, fort → +∞, the solution of problem (4.9)–(4.13), withf ∈
L2(Ω) andg ∈ L2(Γ ) independent of time, converges in a suitable way to the solution u∞ of the

following elliptic system

− div(A∇u∞) = f , in Ωint,∪Ωout; (5.1)

[u∞] = 0 , onΓ ; (5.2)

− divB(B∇Bu∞) = [A∇u∞ · ν] + g , onΓ ; (5.3)

u∞ = 0 , on∂Ω. (5.4)

In order to achieve this goal, we first state an existence and uniqueness theorem for the previous

elliptic system. It is a quite standard result, based on the Lax-Milgram lemma, but for the sake of

completeness, we prefer to give here the complete proof.

Theorem 5.1.LetA ∈
(
L∞(Ω)

)N×N
be a symmetric matrix satisfying (2.5) andB ∈

(
L∞(Γ )

)N×N

be a symmetric matrix satisfying (4.6). Assume also thatf ∈ L2(Ω) andg ∈ L2(Γ ). Then problem

(5.1)–(5.4) admits a unique solutionu∞ ∈ X0(Ω).
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We recall that the weak formulation of problem (5.1)–(5.4) is the following

find u∞ ∈ X0(Ω) such that∫

Ω

A∇u∞ · ∇φ dx+
∫

Γ

B∇Bu∞ · ∇Bφ dσ =

∫

Ω

fφ dx+
∫

Γ

gφ dσ , ∀φ ∈ X0(Ω) .
(5.5)

Moreover, the following energy estimate holds
∫

Ω

|∇u∞|2 dx+
∫

Γ

|∇Bu∞|2 dσ ≤ C , (5.6)

where the positive constantC depends onγA, γB, Ω, Γ , ‖f‖L2(Ω) and‖g‖L2(Γ ).

Proof. Let us consider the Hilbert spaceX0(Ω) endowed with the scalar product defined by

〈u, v〉X0(Ω) =

∫

Ω

∇u · ∇v dx+
∫

Γ

∇Bu · ∇Bv dσ .

Taking into account the Poincaré and the standard trace inequalities, we get that the previous scalar

product is equivalent (and also more convenient in this context) to the one defined in (2.19).

Consider the bilinear and symmetric forma : X0(Ω)×X0(Ω)→ R defined by

a(u, v) =

∫

Ω

A∇u · ∇v dx+
∫

Γ

B∇Bu · ∇Bv dσ ,

which satisfies

|a(u, v)| ≤ C
(
‖∇u‖L2(Ω)‖∇v‖L2(Ω) + ‖∇Bu‖L2(Γ )‖∇Bv‖L2(Γ )

)
≤ C‖u‖X0(Ω)‖v‖X0(Ω) ,

a(u, u) ≥ c
(
‖∇u‖2L2(Ω) + ‖∇Bu‖2L2(Γ )

)
= c‖u‖2X0(Ω) .

(5.7)

Thereforea is a continuous and coercive bilinear form onX0(Ω) × X0(Ω). Moreover, defining the

linear functionalL : X0(Ω)→ R as

L(u) =

∫

Ω

fu dx+
∫

Γ

gu dσ ,

it follows thatL is continuous onX0(Ω), since

|L(u)| ≤ ‖f‖L2(Ω)‖u‖L2(Ω) + ‖g‖L2(Γ )‖u‖L2(Γ ) ≤ C‖u‖X0(Ω) ,

whereC is a positive constant depending on‖f‖L2(Ω), ‖g‖L2(Γ ), the Poincaré constant and the

constant in the standard trace inequality. Finally, noticethat the weak formulation (5.5) can be

written in the form

a(u∞, φ) = L(φ) , ∀φ ∈ X0(Ω) . (5.8)

Hence, the stated result is achieved applying Lax-Milgram lemma to (5.8) and this concludes the

proof.
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Remark 5.2. Clearly, if we assume thatf ∈ C∞(Ω) andg ∈ C∞(Γ ), then the solutionu∞ to

problem (5.1)–(5.4) belongs toC∞(Ω). Indeed, since by our assumptions in Subsection 2.2,Γ is of

classC∞, the proof is quite standard and it relies on a local rectification of Γ and on an iterated use

of energy estimates (similar to the one in (5.6)) applied to higher order derivatives ofu∞.

Remark 5.3. Notice that we can prove also a periodic version of Theorem 5.1; i.e., we can prove

an existence and uniqueness result for the periodic problem

− div(A∇v) = f , in Eint ∪ Eout; (5.9)

[v] = 0 , onG; (5.10)

− divB(B∇Bv) = [A∇v · ν] + g , onG; (5.11)

v is Y -periodic; (5.12)∫

Y

v dy = 0 ; (5.13)

where the requirements (5.12)–(5.13) replace the previousboundary condition (5.4). Here, we have

denoted byY the unit open cell(0, 1)N ⊂ R
N , we have assumed thatY = Eout∪Eint∪G, whereEint

andEout are two disjoint open subsets ofY ,Eout are connected,G = ∂Eint = ∂Eout∩Y , G∩∂Y = ∅
andG is of classC∞, and we have also denoted byν the normal unit vector toG pointing intoEout.

However, in this case, in order to apply a suitable version ofLax-Milgram lemma (see, for instance,

[19, Lemma 2.1], we need to assume also that the compatibility condition
∫

Y

f dy +
∫

G

g dσ = 0 (5.14)

is satisfied, as it is common in periodic problems.

Theorem 5.4. Assume thatA ∈
(
L∞(Ω)

)N×N
andB ∈ (L∞(Γ )

)N×N
are two given symmetric

matrices satisfying (2.5) and (4.6), respectively, and that the initial datumu0 ∈ H1
0 (Ω). Assume that

f ∈ L2(Ω) andg ∈ L2(Γ ) are independent of time. Letu ∈ L2
(
0, T ;X0(Ω)

)
∩ C0

(
[0, T ];L2(Ω) ∩

L2(Γ )
)

be the unique solution of problem (4.9)–(4.13) andu∞ ∈ X0(Ω) be the unique solution of

problem (5.1)–(5.4). Then, there existθ, γ > 0 such that

‖u(t)− u∞‖H1(Ω) + ‖u(t)− u∞‖H1
B(Γ ) ≤ γe−θt, ∀t ≥ 1 . (5.15)

Proof. We first prove that

‖ut(t)‖2L2(Ω) + ‖ut(t)‖2L2(Γ ) ≤ γ̃e−2θt, ∀t ≥ 1 , (5.16)

for suitableθ, γ̃ > 0. Indeed, by [25, Theorem 7.2.1], we get that there exists a strictly increasing

sequence of nonnegative eigenvaluesλj and a sequence of eigenfunctionsŵj := (wj, w̃j) ∈ V

(recall the definition ofV given in (4.14)) such that

û(x, t) := (u, ũ) =

+∞∑

j=1

[
aj −

Fj

λj

]
ŵj(x)e

−λjt +

+∞∑

j=1

Fj

λj
ŵj(x) , (5.17)
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with aj = 〈û(0), ŵj〉H andFj = 〈F̂ , ŵj〉H , whereF̂ = (f, g) ∈ H. In (5.17),ũ stands fortr|Γ(u).
We claim that the first eigenvalueλ1 is different from zero. Indeed, if this is not the case, we have

thatŵ1 = (w1, w̃1) is a nonzero solution of the following eigenvalue problem

− div(A∇w1) = 0 , in Ωint,∪Ωout;

[w1] = 0 , onΓ ;

− divB(B∇Bw1) = [A∇w1 · ν] , onΓ ;

w1 = 0 , on∂Ω;

and this is a contradiction thanks to the uniqueness property stated in Theorem 5.1. Recall thatw̃1

is the trace ofw1 on Γ ; therefore, the second and the third equations above shouldbe written in

terms ofw̃1. However, with abuse of notation, we prefer not to invokew̃1, thus following the same

notation as in (5.1)–(5.4).

Differentiating (5.17) with respect tot, we obtain

ût(x, t) = −
+∞∑

j=1

[λjaj − Fj ]ŵj(x)e
−λjt , (5.18)

where, fort ≥ 1, we have

λ2je
−2(λj−λ1)t ≤ λ2je

−2(λj−λ1) ≤ λ21 + e−2(1−λ1) =: λ̃ , ∀j ≥ 1 .

Notice that, in the last inequality, we have used the fact that, for j > 1, the functionλj 7→
λ2je

−2(λj−λ1) reaches its maximum value forλj = 1. Therefore, taking into account that[λjaj −
Fj ]

2 ≤ 2(λ2ja
2
j + F 2

j ) and

+∞∑

j=1

a2j = ‖u0‖2H and
+∞∑

j=1

F 2
j = ‖F̂‖2H ,

it follows

‖ut(t)‖2L2(Ω) + ‖ut(t)‖2L2(Γ ) = ‖ut(t)‖2H ≤ 2e−2λ1t(λ̃‖u0‖2H + ‖F̂‖2H) ,

and hence (5.16) holds withθ = λ1 and the constant̃γ = 2(λ̃ ‖u0‖2H + ‖F̂‖2H).
Now, for a.e.t ≥ 1, setU(t) = u(t)− u∞ and notice that it solves the system

− div(A∇U(t)) = −ut(t) , in Ωint,∪Ωout;

[U(t)] = 0 , onΓ ;

− divB(B∇BU(t)) = [A∇U(t) · ν]− ut(t) , onΓ ;

U(t) = 0 , on∂Ω.
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By standard computations, we obtain
∫

Ω

A∇U(t) · ∇U(t) dx+
∫

Γ

B∇BU(t) · ∇BU(t) dσ = −
∫

Ω

ut(t)U(t) dx−
∫

Γ

ut(t)U(t) dσ ,

which, applying Young’s inequality, implies
∫

Ω

|∇U(t)|2 dx+
∫

Γ

|∇BU(t)|2 dσ

≤ γ

(
1

2δ

∫

Ω

|ut(t)|2 dx+
δ

2

∫

Ω

|U(t)|2 dx+
1

2δ

∫

Γ

|ut(t)|2 dσ +
δ

2

∫

Γ

|U(t)|2 dσ

)
.

Then, using Poincaré’s inequality and (5.16) and choosingδ sufficiently small, we get
∫

Ω

|∇U(t)|2 dx+
∫

Γ

|∇BU(t)|2 dσ ≤ γe−2λ1t .

A further application of Poincaré’s inequality leads to (5.15) withθ = λ1 andγ a positive constant

independent ofu andu∞.
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