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Abstract

In this paper we derive a model for heat diffusion in a comjgosiedium in which the dif-
ferent components are separated by thermally active autest The previous result is obtained
via a concentrated capacity procedure and leads to a notasdasystem of PDEs involving a
Laplace-Beltrami operator acting on the interface. Fohsausystem well-posedness is proved
using contraction mapping and abstract parabolic probteewry. Finally, the exponential con-
vergence (in time) of the solutions of our system to a stesate $s proved.
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1 Introduction

In recent years there has been ongoing researches on nevositenmaterials displaying more

efficient thermal dispersion properties. This is requiredhany branches of technical applications
in which some specific material characteristics, such asliyijamust be ensured together with an
efficient heat dispersion. For example, that is the casesipticapsulation of electronic devices ([12,
18, 22, 27]). Typically, in this situation, the desired nratkeproperties are obtained by embedding
some highly conductive nanoparticles in a rubber or polyfoam. In such a way the composite
material retains the ductility of the host medium (say a mipland, hopefully, has an increased
heat conductivity (because of the highly conductive indas). It turns out that, indeed, this is the
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case and the presence of the inclusions can increase fivadalductivity. A similar situation is
encountered in some newly developed engine coolants invdainductive nanoparticles are added
to the fluid.

In some situations the embedded nanoparticles are covgrethembrane separating them from
the surrounding medium ([22]). Such a membrane can be bpilidam the very beginning in the
manufacture of the nanopatrticles or, maybe, it can be acarfasurrounding the particle which is
added to avoid clotting.

Motivated by the previous considerations we have decidew/astigate the overall behaviour of
a composite material made of a hosting medium filled with paniicles enclosed in a membrane
with the aim of determining its effects on the resulting coctilvity. This is done in [9, 10] by
means of a homogenization technique when the membrang i€ anl )-dimensional surface. This
approach is motivated by the obvious smallness of the tlkiskof the interfaces and leads to a
description of their thermal behaviour in which the tempanais continuous across the membrane
and solves a heat equation involving the Laplace-Beltrgoerator having, as a source term, the
jump of the heat flux.

In this regard, it remains to prove well-posedness for thetesy of equations modelling heat
conduction in the composite materials with interfaces h&tgame time, it is fundamental to provide
a theoretical motivation of this model regarded as a comagoh limit of a thick membrane. This
paper is devoted to the proof of such results.

The main and most interesting feature of the well-poseditessem of this paper is due to the
fact that the system of PDE’s involves a Laplace-Beltraniatippn coupled with the heat equation
in the surrounding media via the jump of the heat flux. A simtaupling on the boundary of the
domain has been studied by many authors. Among the very \ta@tature on this topic, relevant
papers are, for instance, [11, 20, 23, 26] (see also theerafes therein) for abstract parabolic
equations, and [13, 14, 16, 24] for the Cahn-Hilliard or Al€ahn equation. On the other hand, our
case differs from the previous ones since the coupling sconiinterfaces. Indeed, in our problem
an evolutive equations is satisfied on both sides of thefaterwhere the dynamical condition
is assigned. The techniques of the previous papers arg bgglicable to our case, nevertheless
we believe that the merit of our approach lies in its simpfigvhich takes advantage of the linear
structure of our system of equations. It is worthwhile to dldat such a system of equations is
interesting in itself and it calls for a careful tuning of #vastence theorem, via contraction mapping
and abstract parabolic problems theory as done, for ingtam¢7].

The core part of the paper is devoted to the rigorous deoraif the phenomenological model
used in our previous papers [9, 10]. Obviously, in this freumik, the relevant physical quantities
must be rescaled in a way such that they are conserved imtite)li— 0,  being the thickness of
the membrane. Our choice is to let the specific conductivity@pacity of the interface to blow up
asn~!. This is essential to allow thermal diffusion “along” thencentrated membrane, as required
by the fact that in the no-thickness interface model we hala@ace-Beltrami equation on the
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membrane.

In this framework, it is crucial to quote [20, 26], in whichnslar concentration results are
proved, for a wide class of general nonlinear parabolic jlerok. However, in those papers, after
concentration, only a domaia remains on whose boundary the “dynamical condition” isgrssil;
while, in this paper, we find, also in the limit, two domainpaeated by an active interface, where
the two fluxes are coupled via a Laplace-Beltrami parabaliaéon, as in [8].

On the other hand, scaling by the factpshould lead (as in [4]) to a concentrated model in
which no tangential diffusion takes place, while the terapge has a transversal jump (see, for
instance, [1, 2, 3, 5, 6] for a similar approach in the framewvad electrical conduction). The proof
of the concentration result relies on suitable a-priorineates and proper identification of the limit
function together with a description of the membrane in teaiproper curvilinear coordinates.

Finally, the last part of the paper is devoted to the studyhefdsymptotic properties of the
solutions. Namely, well posedness for an elliptic courderpf our original problem is proved
together with the convergence in time of the solutions of ¢kielutive system of PDE’s to the
solution of such elliptic problem (as, for instance, in [23)).

Such a convergence is proved to be exponential providedainees terms do not depend on
time.

The paper is organized as follows: in Section 2 we recall gfendion and some properties of
the tangential operators (gradient, divergence, LapBelgami operator), we state our geometrical
setting and we introduce our model. In Section 3 we prove dimeentration result, while in Section
4 we prove the well-posedness for the concentrated prolitamally, in Section 5, we prove the
time-asymptotic result.

2 Preliminaries

2.1 Tangential derivatives

Let ¢ be aC?-function, ® be aC?-vector function ands a smooth surface iR" with normal unit
vectorn. We recall that the tangential gradient@bn S is given by

VEp=Vo—(n-Vo)n (2.1)

and the tangential divergence ®fon S is given by

div? @ = div? (® — (n- ®)n) = div (® — (n - ®)n)
=div® — (n-V®,)n; — (divn)(n - ®), (2.2)

where, taking into account the smoothnes$pthe normal vector. can be naturally defined in a

small neighborhood of as %, whered is the signed distance froil. Moreover, we define as
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usual the Laplace-Beltrami operator as
Ny = divP(VBp). (2.3)
Finally, we recall that on a regular surfaewith no boundary (i.e. whefiS = ()) we have

/ divP ®do =0. (2.4)
S

2.2 Geometrical setting

Let £2 be a given open, connected and bounded subsgt'ofvith Lipschitz boundary, such that
2 = O U Qo U I, 24y and 2o are two disjoint open subsets 6f, (2, is connected]” =
Ot = 020N 2, ' N 02 = () and we assume thdt is of classC™. Let v, denote the normal
unit vector tol” pointing into{2,, and[u] be the jump of: across/” as defined in (2.16).

Actually, in the physical framework, the interface is not(&n — 1)-dimensional surface but it
has a very small positive thickness. Hence, we need alsortsider a more physical setting, in
which it appears a small parameter which takes into acctwerttickness of the physical interface.

To this purpose, fon > 0, let us writef? also asf? = 27U " U O™, where(2" and™ are two
disjoint open subsets d?, I is the tubular neighborhood df with thickness), andol™ is the
boundary ofl"”. Moreover, we assume also that = ! U 20, wheref2l,, 2", correspond to

the external region and to the internal one, respectivalygd™ = (062 U0S24,) N 2. We assume
that, forn — 0 fixed, |I"| ~ n|["|n-1.

Figure 1:Left: before concentratiorf;” is the dark grey region?’, is the white region and’y,, is

the light grey regionRight: after concentration/™ shrinks to/” asn — 0, {2, is the white region
and{(2, is the light grey region.

We stress the fact that the appearance of the small parame#dls for a limit procedure; i.e.,
the concentration of the thick membrah@, in order to replace it with théN — 1)-dimensional
surfacel’, then simplifying the geometry of the problem.
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We will also use the following notation. L&t > 0 be a given time, for any spatial domaif
we will denote byGr = G x (0,T) the corresponding space-time cylindrical domain.

2.3 Position of the problem

In this subsection, we give a complete formulation of thebpgms stated in the Introduction. We
will present both the physical problem involving the thickembrane and the concentrated version
involving only the(/NV — 1)-dimensional interface. It will be the purpose of next satto show that
the concentration limit7{ — 0) of the physical model actually gives rise to the interfagaoem.

We first state the physical problem in the framework of thimmbeanes. To this purpose, let
Lint: Hout, @ be strictly positive constants. Assume tHatB € (L>(2)) NN are symmetric matrices
satisfying

val€?, fora.e.xr € 2 andeverg € RY; (2.5)
vel€[*, fora.e.x € 2 and ever € RV, (2.6)

A(z)¢ - €
B(x)¢ - ¢

>
>

for suitable constantg,, vz > 0.

We seta” () = pint I 27, a"(x) = pout iN gy a(x) = a/mpin I, A"(x) = Ain 21 U 2y
ANz)=n"'Bin ",

A meaningful case in the applications is the one in wiidls a multiple of the identity by means
of a scalar function\ : {2 — R* such that

A= )\int in Qint, A= )\out in Qoutu

andB = (1, wherel denotes the identity matrix aritl> 0 (see for instance [3, 10]).
Letw, € L*(12), f,g € L*(£2r) and set

f(z,t) if (z,t) € 2" x (0,7);
n t) =
et =31y if (x,¢) € I x (0,7).
n
For everyn > 0, we consider the problem fat’(xz,t) € L?(0,T; H}(£2)) given by
ou” ) .
o' —— — div(ATVu') = f7, in Q7 (2.7)
ul(x,t) =0, onaf? x (0,7); (2.8)
u(x,0) =up(z), in £2; (2.9)

which has the following standard weak formulation

T T T
—//a"u"% dxdt+//A"Vu"-qudxdt:/a"ﬂogb(O) dx+/ / fodxdt, (2.10)
0 Jo ot 0J o) 0Je
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for every test functionp € C>({2y) such thatp has compact support if? for everyt € (0,7)
and¢(-,T) = 0 in (2. Clearly, for any giver; > 0, problem (2.7)—(2.9) (or (2.10)) is a classical
parabolic problem and hence it has a unique solutigh) € L?(0, T; H}(£2)) NC° ([0, T]; L*(12)).

Now, let us state the mathematical concentrated problethiFpurpose, we defineasy = pint
iN Qi andp = pioyt iN 2oy We assume also thét € L°°(I") and satisfies (2.6) for a.e. € I,
Uy € L*(I") andg € L?(I'r). We consider the problem far(z, ¢) given by

ou

Por div(AVu) = f, in O27; (2.11)
[u] =0, onIr; (2.12)
ag—? — divB(BVBu) =[AVu-v|+g, onIlrp; (2.13)
u(z,t) =0, ondN x (0,T); (2.14)
u(x,0) =Tg(x), in 2, (2.15)
where we denote
[u] = u® —u™, (2.16)

and the same notation is employed also for other quantiiese the operatorgiv andV, as well
asdiv” andV?, act only with respect to the space variable

Since problem (2.11)—(2.15) is not standard, in order toneediproper notion of weak solution,
we will need to introduce some suitable function spaceshi®purpose and for later use, we will
denote byH 4 (I") the space of Lebesgue measurable functions” — R such that, € L*(I"),
VBu € L*(I'), endowed with the natural norm

HUHE}B(F):/Fu2da+/F|VBu\2da. (2.17)

Let us also set
Xo(£2) :={u € Hy(2) : tr|(u) € Hp(I)}. (2.18)

We note thatt;((?2) is a Hilbert space endowed with the scalar product given by

<u,v)XO(Q):/uvdx+/Vu-Vvdx+/uvda+/VBu-VBvda, (2.19)
0 7 r r

for all u, v € Xy(£2), where, for the sake of brevity, we identifiyandv with their traces in the last
two integrals of (2.19). Indeed, the only delicate poinbiptove completeness. On the other hand,
this last property is guaranteed by the continuity of thedsaand by the completenessidf(2)
and H}(I'), which assure that a Cauchy sequefigg} € X,(2) is such that,, — u strongly

in H3(£2) and alsotr|,.(u,) — w strongly in H}(I"). Moreover,tr| .(u,) — tr|.(u) strongly in
L?(I') because of standard trace properties; hemg(ﬂ) = w and thusi € X(12).
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Definition 2.1. We say that, € L? (0, T; XO(Q)) is a weak solution of problem (2.11)—(2.15) if

// u—dxdT+/T/AVU~V¢dxdT
—a/ /u—dadT+/ /BVB VB¢ dodr
/uu(@(:c 0) dx+a/u0¢(:c 0) do—+/ / f¢dxdr+/ /g¢dadr (2.20)

for every test functio € C*({2r) such thatp has compact support if? for everyt € (0,7") and
o(-,T)=0in 1.

We will prove in Section 4 that problem (2.11)—(2.15) adraitslique solution, € L? (0, T; XO(Q))ﬂ
CO([0, T]; L*(£2) N LA(I)).

3 Derivation of the concentrated problem

In this Section we will also assume that the initial datuge W'°°(£2) and that the source €
LQ(O,T; leoo(Q)). First we note that, by an integration by parts, one can ddrivm (2.10) the
energy inequality

ow [ g O s = RCORCLE

te(0,T) te(0,T) 1

/ / |Vu|? dz dr + = / Vu|?dzdr < v, (3.1)
Q0ut 92 I

wherey depends oWint; fout, @, va; Y5 2], 1G], 1ol oo (), [ f 221y, |9]l 20,7505 (), DUt ROt ON
n. As a consequence, as— 0, we may assume, extracting a subsequence if needed,

um — u,Vul — Vu, weakly in L*(£27),

whereu € L?(0,T; H}(2)). We characterize in Theorem 3.1 as the solution of the concentrated
differential problem (2.11)—(2.15).

In order to proceed with the concentration of problem (ZZ.8), we need to choose a suitable
testing function in the weak formulation (2.10), before giag to the limit fornp — 0. To this
purpose we recall that there existsigrn> 0, such that for) < 7, the application

VDX [—nn =T, Yy.,r) =y, +rv(y.) =y el

is a diffeomorfism onto its image, where we denotell5y the tubolar neighborhood af with
thicknes2n. Clearly, I'*" can be considered as the union of surfaces denoted. iparallel tol”
and at distancér| from it, whenr varies in[—n, n]. Hence, fory € I'?", there exists a unique
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(yp,7r) € I' x [n,n] such thaty = y,. + rv(y,.) and theny € I, andv(y,) coincides with the
normal to the surfacé, aty. Moreover, we can locally parametrizéin such a way that there exist
I' c R¥'andy, : I' — I'suchthatl’ 5 y, = y,.(¢), where¢ = (¢&y,...,&n-1) € I and, if
we set & = /g(€) d¢, we may assume that < \/g(€) < ,, for every¢ e I', wherey,, ~, are
suitable strictly positive constants. As a consequencehave obtained a change of coordinates in
RY, whose Jacobian matrix will be denoted B¢, ), defined by

I sy =(y, ... yn) «— (&1)= (&, En_1,r) €T X [—n,1].

By the assumed regularity @, it follows that.J (¢, ) = J(&, 0) + M,, where),, denotes a suitable
matrix such that)M,| < vn, so thatidetJ (¢, r)| = |detJ(€,0)| + R, where|R,| < yn; moreover,
by the choice of the coordinatés r), we have thaldet (.J(£,0))| = 1/g(€) (recall that the volume
element ¢ = |det(J(¢,7))|dédr for r = 0, i.e. onI", becomes ¢ = |det(J(£,0))|d¢dr =
dodr = Mdf dr).

Finally we sety,. = my(y), i.e. the orthogonal projection @f € I'*” on I', r = p(y), i.e. the
signed distance af € " from I'; note that Vp(y)| is bounded.

In the sequel, we assume without loss of generality that tppart of our testing functions is
sufficiently small to allow for the representation introddcabove. The general case can then be
recovered by means of a standard partition of unity argunidoteover, for the sake of brevity, we
will use the same symbol for the same function even if writtéh respect to different variables.

Theorem 3.1. Assume thati, € Wh>(2), f € L*(£2r), g € L*(0,T; W'>=(£2)), B = bI, where
I is the identity matrixp € L>(I"), b(x) > ~p, for a.e.z € I', and it is extended to the whole
of I asb(y) = b(mo(y)). Then, forn — 0, u” — u weakly in L?(0,T’; Hj(£2)), whereu is the
solution of problem (2.20).

Proof. Let ¢ € C*=({2r) such thatp has compact support (sufficiently small) ihfor everyt €
(0,7)andp(-,T) = 0in {2, be the general testing function for the concentrated prol2.11)—
(2.15). Starting fromp, we construct a suitable test functigfi for problem (2.10) in such a way
that it does not depend on the transversal coordinate idSidéeing constantly equal to its value
onI’) and itis linearly connected with in 2, and (2}, along ther-direction. It is crucial in order

to develop the concentration procedure to make this gluetmgye the diffusivity in equation (2.7)
is stable with respect tg, i.e. inside the sef®7 \ I C 2! U 20, To this purpose, define

int

(¢(y,1) if (y,t) € (2gu\ ") x (0,T);
Pouly, 1) if (y,t) € (2o ") x (0,T);
@y, 1) = § ¢(mo(y),t) if (y,t) € I x (0,7); (3.2)
Pint(y: 1) if (y,1) € (20N IT*7) < (0,7);
o(y,t) if (y,t) € (2 \ ") x (0,T);
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where

Aulint) = [eml) + ) — om0 O 4 .
and

Aalrt) = o) = wlml) — w0 ZLE 4 o).,

Note that the linearity is intended with respecilg). By a density argument, we can uséas a
testing function in (2.10); then, it follows

// dydT——// u77 WO )dydT
S0\ 2” rn

|nt

// 17 Solntd d _// a‘Poutd d
on nF2n 22 thQW

// AVU" - Vedydr + — // BV - Vo(mo(y), 7) dy dr
_QW UQ” F27/ Im

int out

/ / AVU"T -Vl dydr +/ / u" - Vg dy dr
o6 nrn 23 mF2'1

out'
_ /(Q

piow(y,0) dy + — / Top (o (y), )dy+/ [Topin(y, 0) dy
U2 )\2n ohnrn

+/ Laopau(y, 0 dy+// fedydr + — // g (mo(y), 7) dy dr
Q”/u NI2n " Q”l F271 rm

|nt out

/ / fol dydr + / / Fohdydr (3.3)
o0 nr2n 023N

Due to estimate (3.1) and taking into account that

2Vp(y)

Veouly, t) = S(n) + {@(Wo(y) + nv(mo(y)), t) — @(mo(y), t)} p

where with$(n) we denote a bounded quantity with respech t@learly, the same holds fas,)
and

‘ {<P(7T0(y) +nr(mo(y)), ) — (mo(y) } ‘ <9, (3.4)

with ~ independent of;, it is easy to see that when— 0, the second, the fourth, the sixth and the
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eighth line in the equality (3.3) tend t) moreover,

Op
—d dT—>// u—d dr,
//Q T U \F2’7 ot v Q,mu(zomlu ot Y

int OUI

// AVu"-Vgpdyd7—>// AVu-Vepdydr,
27003 IN\I2n QintU20ut

int out

/ pioe(y,0) dy — piiop(y, 0) dy
1 uR?

intY 2000 VAL OintU2out

// fcpdyd7‘—>// fodydr.
21U I\ iU 20ut

int

Finally, by the properties of the traces, it is not difficutget also

2 [ 0l >dyd7_a/j[%/mun8 Dol 4 ]dw// 92 4y 47

(%

—/ o (mo(y), 0) dy = a [%/muo(p(ﬁo( ) )dy} —>oz/ﬂ0<p(y,0)d

//f‘"g@ o dydT_/oT[%/ 9 (), dy} dT_>//gwdydr

Hence the crucial limit is the sixth one in (3.3). To deal witits limit, we pass to the new coor-
dinates(¢, r) defined above, recalling that(¢, ») denotes the Jacobian matrix of such a change
of coordinates. Moreover, denoting By7. the tangential gradient with respect to the surfage
and recalling that the normal vector @ate I, coincides with the normal at,(y) € I', we have
VEu" = Vul — (v(m(y)) - Vulr(m(y)), with r = p(y). Also, since the test function does not
depend on the normal coordinatén I, we have thaWV (7 (y),t) = VB¢ (m(y),t) and hence
Vo Vul = VByp - VB ,u". Then, setting for the sake of simplicity(¢) := J(&,0) and taking
into account the scalar natureBt we can rewrite

1/ /sz mo(y)) V" - Ve (mo(y), 7) dy dr
/ /F mo(y)) VP e(mo(y). 7) - VI, u" dydr
:E /0 /f“/_ /2 o, 0)(j(€’ ) Vep(€, 0, T))Tj(fv r)Veu"|detJ (&, )| dE dr dr

=:11(n) + I2(n) ,

where

/ / (&, 0 T(§)Vep(£,0 r))T <1 /W2 J()Veu" (&, r,7) dr) Vg(€)d¢ dr

n —n/2
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and/,(n) is the remaining part. Heref(g, r) is the rectangular matrix such that, for every function
v(y), f(g, r)Vev(€,r) = V?p(wv(y), and the supscrigt denotes the transposed vector. Obviously,

due to the regularity of", also the matrix/ is regular, so thaf (¢, ) = J(£,0) + O(n).
Clearly, using the energy estimate (3.1),

1 (7 1/2
|I5(n)] Sﬂy% (5/0 /F \Vu"\zdydT) Vv <yn—0 asn — 0.

On the other hand, by Holder’s inequality and again the gnesiimate (3.1), it follows that
1 f"n/z J(€)Veu" (€,7,7) dr is bounded uniformly with respect tpso that there exists a vector

functionV € L2(0, T; L*(I')) such that, up to a subsequence,

n/2 _ ~
E / T Ve (€, r.7)dr =V, weaKlyinL2(0, T; LX(T)).
nJ—nn

Hence, we obtain

/ / (&, 0 Vgap(f 0 T))T (1 /?7/2 j(S)Vgu"(g,r, 7') dr) \/@dde

nJ-n
—>// 60 Vs@fof)v\/Ldng/ /bVng Vdodr .

It remains to identifyV as the tangential gradient of the limiti.e., V = V2« on I". To this aim
we consider a vector test functidne C!(£2r); we obtain

[ [ wugra — [ [ e q,( [ @FW@F),T)dT) b
/ /\P vB( /_n; <yF+TV<yr)7T)dT> do dr
/ / < /—n/2 TV (€, 7)d )FdﬁdT

—>—/O /ﬁ@-v\/@dng:—/oT/F\If-Vdadr,

which implies thatV = VZu. This proves that the limit fon — 0 of equality (3.3) gives rise to
(2.20), whereB = bI; i.e., the concentration limit of” is the weak solution of system (2.11)—
(2.15). O

Remark 3.2. Notice that, even if in the physical applications we have indithe capacitive coeffi-
cientsy anda are constant in each phase (see [9, 10]), the results in &medrl can be generalized
to the case in whichy € L>(£2) anda € L>(I"), with u(z) > po a.e. inf2 anda(x) > oy a.e. on
I", for proper constantg,, oy > 0. In this case, we assume thatinda are extended to the whole
of " constantly along the transversal direction; it€y) = p(m(y)) anda(y) = a(m(y)).
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4 Well-posedness of the concentrated problem

In this section we consider the following nonlinear versidproblem (2.11)—(2.15)
ou

o — div(AVY) = f(z,t,u), iN (2in¢ U 2ou) x (0,7); (4.1)
[u] =0, on I'r; (4.2)

% — div?(BVPu) = [Avu vl +g(z,t,u),  onIy; (4.3)
u(z,t) = ond x (0,7T); (4.4)

u(z, ):a (z), in (2, (4.5)

where, with no loss of generality, we have assumed ghat= o« = o = 1 (see Remark 4.3
below). The weak formulation of the previous problem is diethe same as in (2.20), replacirfg
andg with their nonlinear versions.

The main result of this section is the following theorem.

NxN NXxN

Theorem4.1.Let A € (L>(12))
be a symmetric matrix satisfying

be a symmetric matrix satisfying (2.5) aide (L>(I"))

B(z)¢ - € > vpl€)?, fora.e.x € I'and everyt € RY . (4.6)

Assume thati, € H;(£2). Assume also that € L*(£2¢;C°(R)) andg € L*(I’r; C°(R)) are two
given functions such that there exist ¢, > 0 with
|f(z,t,s1)— f(x,t,82)| <Llf|si—sa|, fora.e.(z,t) € 2randVsy, sy €R; 4.7)
lg(x,t, 1) —g(x,t,re)| <Ly|ri—mrs|, fora.e.(z,t) € [y andVry, ry€R. (4.8)
Then problem (4.1)—(4.5) admits a unique solutiore L2 (0, T; Xo(£2)) N C°([0, T; L*(£2) N
LA(I)).

In order to achieve this result, we first prove the well-posss of a linear version of problem
(2.11)-(2.15); i.e.,

g_? — div(AVu) = f(z, 1), iN (2 U Qou) x (0,7); (4.9)
[u] =0, onIr; (4.10)

g_? —div?(BV®Pu) = [AVu-v] + g(z,t),  onlry; (4.11)
u(z,t) =0, ono x (0,7); (4.12)

u(z,0) = (), in (2. (4.13)

Theorem 4.2.Let A € (L=(2))"*" andB e (L>=(I'))"*" be two given symmetric matrices

satisfying (2.5) and (4.6), respectively. Assume taE H}(12), f € L*(Q2r), g € L*(I'r). Then
problem (4.9)—(4.13) admits a unique solutior L*(0, T'; Xo(£2)) N C°([0,T); L2(£2) N L*(1)).
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Proof. Let us consider problem (4.9)—(4.13) in an abstract paraketting, as for instance in [25]

and [28]. To this purpose, let us set
H = {a = (u,u) € L*(2) x L*(I)}, 4.14)
V = {i:= (u,u) € H)(£2) x HL(I') ,u = tr|(u)}; '

and notice that/ andV are Hilbert spaces if we define

(ﬁ,@>H:/uv dx+/ﬁz~1da;

2 r

(1, D)y = (a,@>H+/ Vu - Vo dx+/vBa-vBa do (4.15)
2 r

:/uv dl’—F/ﬁ’EdO'—i—/VU'Vde—F/VB’l’I'VB’ﬁdO'.
Q r Q r

Indeed,H is a product of two Hilbert spaces and which is a linear space strictly contained in
H}(2) x HL(I'), is complete and hence a Hilbert space, too. The completerfi&sis obtained as
done in Subsection 2.3 below formula (2.19).

Moreover,V C H with compact and dense injection. Define also the bilinear gmmetric
forma:V xV — Ras

a(t,d) = / AVu - Vo dz + / BVPu-VPT do, (4.16)
(9] r

which satisfies
a(@, )] < € (IIVul 2 IV0l @) + IVl I V55 2y ) < Clal ol
a(, @) 2 ¢ (IVulfag) + IV5ilary ) = cllal

where we use both the Poincaré and the trace inequalittes ahare positive constants depending

on (2, I, v4, 78, || Al « and|| B| . Indeed, since. € H(£2) andu = tr| . (u), the norm|Vul| 2o

controls both|u|| .2 and||u|| .2(r). Henceg is a continuous and coercive bilinear formén< V.
Now, let us rewrite problem (2.11)—(2.15) in the followinigstract form:

finda € L?(0,7;V) N C°([0, T); H) such thati(0) = u, and
d .

700, O + a(@t), 0) = (F(t),0)n,  VoeV (4.18)

in the sense of distribution if0, '), where we sef'(t) = (f(-,£),9(-,t)) € H.Indeed, the weak
formulation (2.20) coincides with the distributional foukation of the abstract parabolic equation
in (4.18), when we take into account the density of the testtions inL? (0, 7; V) NC° ([0, T7]; H).

By [25, Theorem 7.2.1] problem (4.18) admits a unique sotuéind this concludes the proof.[]

Proof of Theorem 4.1.et us consider the space= L*(27) x L*(I7), endowed with the norm
1(5,3)|ls = \/HSH%%Q?) + [13132(r,., - whereT < T will be chosen later. Let us define the operator
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L:8 — SasL(s,s) = (r,7) wherer € L*(0,T; X(£2)) N C°([0,T]; L*(2) N L*(I)) is the
unique solution of (4.9)—(4.13) witf g replaced byf (z, ¢, s(x, t)) andg(x, t, s(x, t)), respectively,
andr =r | Iy

We claim that, ifT is chosen sufficiently small depending er, vz, ¢/, ¢,, but not on the initial
datumu,, then the operatat is a contraction mapping. Indeed, sett{ri) E) = (ri1—rq, 11 —T2) €
S, where(r;, ;) = L(s;,s;), 7 = 1,2, we obtain that? satisfies

OR

o~ AV(AVR) = f(x.t,51) = f(2..5). in (Qine U o) x (0,7); (4.19)
[R] =0, onIr; (4.20)

%—f — divP(BVPR) = [AVR - V] + g(z,t,51) — g(2,t,52), onlry; (4.21)
R(xz,t) =0, onaf? x (0,T); (4.22)

R(z,0) =0, in (2. (4.23)

Hence, multiplying (4.19) by, integrating by parts if2;, and taking into account (4.20)—(4.23),
we obtain

T T
sup/ R%*(t)dx + sup/ R*(t) do +/ / |VR|*drdr +/ /|VBR|2dUdT
0,1y 2 o,y r 0 J 0oJr
T T
Y </ / [f('r7t7 Sl) - f('r7t7 52)]Rdx dT _'_/ /[g(xutvgl) - g($7t7g2)]RdU dT)

IA

<% <€f// s1— so)Rdzdr + ¢, //31—52 Rdad7’>
< _|| g + g 4.24
Y S1— 52HL2(Q— || HL2(Q— ||31 52||L2(F 9 | HLQ(FT) ) (4.24)
wherey = m Dropping the last two integrals in the first line of (4.24@antegrating in
(0,T) we get

//R2 dxdT+//R2 ) do dr

< Tamax(ty, ()T (131 = sallZacap) + 1 Rlxgap) + 15 = Sllda + 1R Bary) - (4:25)

Now, choosingdl’ = , after simple computations, it follows

1
2ymax(£y,lg)

T T
1 -~
//R2dxd7+/ /RngdTgg<||sl—52||§2(QT)+||sl—32||iQ(FT)), (4.26)
0 2 0 r

which implies

IL(s1,31) — L(s2,3)|ls = ||(R, R)||s < (81— 82,51 — 52) |- (4.27)

\[H
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Hence the claim is proved. Therefore, by the Contraction pitagp Theorem there exists a unique
fixed point of L in S given by (u |o_,u |r.), whereu € L?(0,T; Xy(£2)) N C°([0,T]; L*(£2) N
L*(I')) and satisfies

% — div(AVa) = f(z,t,u) in (e U Qou) % (0, T); (4.28)
[ul =0, onI x (0,7); (4.29)

% — div?(BVPu) = [AVu - V] + g(z,t,u), onI x (0,7); (4.30)
u(z,t) =0, ondN x (0,7); (4.31)

u(z,0) =1, in £2. (4.32)

SinceT is independent of the initial datum,, the previous procedure can be iterated step by step
in intervals with amplitudd’, thus covering the whole time intervél, T') in the statement of the
theorem. O

Remark 4.3. Notice that the results in Theorems 4.1 and 4.2 can be gérestab the case in which
capacitive coefficients € L>(f2) anda € L>(I") (with u(x) > uo a.e. inf2 anda(x) > o a.e.
on [, for proper constants,, oy > 0) appear in front of the time derivative in (4.1) (or in (4.8))d

in (4.3) (orin (4.11)). Indeed it is enough to redefine in thegd of Theorem 4.2 the scalar product
on the spacé{ as

(i1, D) = /Q ju(a)uw de + /F o ()i do

5 Time-asymptotic limit

In this section we will prove that, fof — +oc, the solution of problem (4.9)—(4.13), with €
L*(2) andg € L?*(I") independent of time, converges in a suitable way to the isolut,, of the
following elliptic system

—div(AVuy) = f, N ine, ULout; (5.1)
(o] =0, onrl’ (5.2)
—div?(BVPuy) = [AVus - V] + g, onrl (5.3)
U =0, onof. (5.4)

In order to achieve this goal, we first state an existence angueness theorem for the previous
elliptic system. It is a quite standard result, based on e Milgram lemma, but for the sake of
completeness, we prefer to give here the complete proof.

Theorem5.1.Let A ¢ (L"O(Q))NXN be a symmetric matrix satisfying (2.5) aidc (L"O(F))NXN

be a symmetric matrix satisfying (4.6). Assume also that L?(2) andg € L*(I"). Then problem
(5.1)—(5.4) admits a unique solutian, € Xy({?2).
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We recall that the weak formulation of problem (5.1)—(5sthe following

find us, € Xp(£2) such that

55
/ AV, - v¢dx+/ BVPu, -VBpdo = / f¢dx+/ godo | Vo € Xy(92). (®-5)
2 r 2 r
Moreover, the following energy estimate holds
/ |Vuoo\2dx+/ |VBuq|?do < C, (5.6)
2 r

where the positive constatdepends on 4, vz, 2, I,

f||L2(Q) and||9||L2(r)-

Proof. Let us consider the Hilbert spaég((2) endowed with the scalar product defined by

<u,U>XO(Q):/Vu-Vvder/VBu-VBvda.
0 r

Taking into account the Poincaré and the standard tracgialities, we get that the previous scalar
product is equivalent (and also more convenient in thisexdhto the one defined in (2.19).
Consider the bilinear and symmetric form X;({2) x Xy ({2) — R defined by

a(u,v) = / AVu - Vu dx—i—/ BVPu-VPy do,
9] r
which satisfies
0w, )| < € (190l 2y IV 0ll 2y + 1970l 2y 1970l 2y ) < Cllull g 10l ey
aw, 1) = ¢ (IIVula + 1V ullar ) = cllullio -

Thereforeu is a continuous and coercive bilinear form &n((2) x X, ({2). Moreover, defining the
linear functionall : Xy(£2) — R as

L(u)z/{zfudx+Lguda,

it follows that L is continuous o, ({2), since

|| < e lull 2y + gl z2omy lull 2y < Cllullxo) »

whereC' is a positive constant depending || .. ), [l9[l .2, the Poincaré constant and the
constant in the standard trace inequality. Finally, notltt the weak formulation (5.5) can be
written in the form

a(us, ¢) = L(9), Vo € Xp(12). (5.8)

Hence, the stated result is achieved applying Lax-Milgramrha to (5.8) and this concludes the
proof. O
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Remark 5.2. Clearly, if we assume that € C>*(f2) andg € C>(I"), then the solution, to
problem (5.1)—(5.4) belongs t&5°({2). Indeed, since by our assumptions in Subsection/2i&,0f
classC, the proof is quite standard and it relies on a local rectificeof /" and on an iterated use
of energy estimates (similar to the one in (5.6)) appliedigthér order derivatives af...

Remark 5.3. Notice that we can prove also a periodic version of Theoremi®., we can prove
an existence and uniqueness result for the periodic problem

—div(AVv) = f, iN Eint U Eoyt, (5.9)
v]=0, ong; (5.10)
—div?(BVPv) = [AVV V] +g, ong; (5.11)
v isY-periodic; (5.12)
/ vdy =0; (5.13)

Y

where the requirements (5.12)—(5.13) replace the pre\aouadary condition (5.4). Here, we have
denoted byt the unit open cell0, 1) c RY, we have assumed theit= E, U Einy UG, whereEy,
andE,, are two disjoint open subsetsBf £, are connected; = 0FEj = 0EqNY,GNIY =0
andg is of clasC>, and we have also denoted byhe normal unit vector t¢ pointing into Fq.
However, in this case, in order to apply a suitable versidreaftMilgram lemma (see, for instance,
[19, Lemma 2.1], we need to assume also that the compatibditdition

/dey—i-/ggda:O (5.14)

is satisfied, as it is common in periodic problems.

Theorem 5.4. Assume thatd € (L=(2))"*" andB e (L>=(I"))"*" are two given symmetric

matrices satisfying (2.5) and (4.6), respectively, andthainitial datuniz, € H](2). Assume that
f € L*(2) andg € L*(I") are independent of time. Lete L2 (0, T’; Xy(£2)) NC° ([0, T7]; L*(£2) N
L?(I")) be the unique solution of problem (4.9)—(4.13) and € X;,(2) be the unique solution of
problem (5.1)—(5.4). Then, there exfsty > 0 such that

lut) = ueollm o) + () = wcllyry < 7™, V=1, (5.15)
Proof. We first prove that
lue() 12y + lue)Zery <Fe™",  VE>1, (5.16)
() ()

for suitabled, 7 > 0. Indeed, by [25, Theorem 7.2.1], we get that there existsiclgtincreasing
sequence of nonnegative eigenvaluesand a sequence of eigenfunctions := (w;, w;) € V
(recall the definition o/ given in (4.14)) such that

= F > r
i(w,t) = (u, ) = Y [aj — A—J} dj(w)e ™+ 3 A_{wj(x) , (5.17)
J j=1 J

J=1
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with a; = (4(0), ;) andF; = (F, ;) i, whereF = (f,g) € H. In (5.17), stands fortr|(u).
We claim that the first eigenvalug is different from zero. Indeed, if this is not the case, weehav
thatw, = (wy, w;) is a nonzero solution of the following eigenvalue problem

—div(AVw;) =0, iN Qine, ULout;
[wi] =0, onl’
—div?(BVPw,) = [AVw, - 1], onl’
w; =0, on o42;

and this is a contradiction thanks to the uniqueness prpgtated in Theorem 5.1. Recall that
is the trace ofw; on I'; therefore, the second and the third equations above sl@udritten in
terms ofw;. However, with abuse of notation, we prefer not to invake thus following the same
notation as in (5.1)—(5.4).

Differentiating (5.17) with respect th we obtain

“+o00
dy(z,t) = =Y _[Naj — Fjliy(x)e™" (5.18)
j=1
where, fort > 1, we have
)\?e_z(’\j_)‘l)t < )\?e_2()‘f_)‘1) < )\% + e 20-M) . X, Vi>1.

Notice that, in the last inequality, we have used the fact, tfex j > 1, the function); —
A2e2 M) reaches its maximum value for, = 1. Therefore, taking into account thgt;a; —
Fj]? <2(Na? + F7) and

+00 +oo
doad=|wlz and Y F = |F|l%,
j=1 j=1

it follows
()12 00y + Nlue®) 720y = llue(®)l|7 < 272 (Aol + 1 F113)

and hence (5.16) holds with= ), and the constart = 2(X |[w||% + || F']|%).
Now, for a.et > 1, setU(t) = u(t) — u~ and notice that it solves the system

) = —uy(t), iN 2ing, Uout;
]=0, onrl’
—div®(BVPU(t)) = [AVU(t) - v] —w,(t),  onI;
U(t)=0, on of.
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By standard computations, we obtain

/ AVU(#) - VU (t) do + / BVEU(t) - VAU () do = — / w(t)U(t) dr — / w(®U(#) do,

r r
which, applying Young'’s inequality, implies

L\VU(t)\2dx+AlvBU(t)|2da

gy<2—15/Q|ut(t>|2dx+g/g|U<t)\2dx+%ﬁ|ut<t)\2da+g/Fw(t)\?da).

Then, using Poincaré’s inequality and (5.16) and choosisigfficiently small, we get

/\VU(t)\2dx+/ VBU)[2 dor < ye2Nt
k0] r

A further application of Poincaré’s inequality leads tol®) withd = A\; and~ a positive constant
independent of: and . O
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