An existence and uniqueness result, up to fattening, for a class of crystalline mean curvature flows with natural mobility is proved. The results are valid in any dimension and for arbitrary, possibly unbounded, initial closed sets. The comparison principle is obtained by means of a suitable weak formulation of the flow, while the existence of a global-in-time solution follows via a minimizing movement approach.© 2016 Wiley Periodicals, Inc.
Existence and uniqueness for a crystalline mean curvature flow / Chambolle, Antonin; Morini, Massimiliano; Ponsiglione, Marcello. - In: COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS. - ISSN 0010-3640. - STAMPA. - 70:6(2017), pp. 1084-1114. [10.1002/cpa.21668]
Existence and uniqueness for a crystalline mean curvature flow
MORINI, MASSIMILIANO;Ponsiglione, Marcello
2017
Abstract
An existence and uniqueness result, up to fattening, for a class of crystalline mean curvature flows with natural mobility is proved. The results are valid in any dimension and for arbitrary, possibly unbounded, initial closed sets. The comparison principle is obtained by means of a suitable weak formulation of the flow, while the existence of a global-in-time solution follows via a minimizing movement approach.© 2016 Wiley Periodicals, Inc.File | Dimensione | Formato | |
---|---|---|---|
Chambolle_Existence_2017.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
284.45 kB
Formato
Adobe PDF
|
284.45 kB | Adobe PDF | Contatta l'autore |
Chambolle_postprint_Existence_2017.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
222.43 kB
Formato
Adobe PDF
|
222.43 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.