An existence and uniqueness result, up to fattening, for a class of crystalline mean curvature flows with natural mobility is proved. The results are valid in any dimension and for arbitrary, possibly unbounded, initial closed sets. The comparison principle is obtained by means of a suitable weak formulation of the flow, while the existence of a global-in-time solution follows via a minimizing movement approach.© 2016 Wiley Periodicals, Inc.

Existence and uniqueness for a crystalline mean curvature flow / Chambolle, Antonin; Morini, Massimiliano; Ponsiglione, Marcello. - In: COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS. - ISSN 0010-3640. - STAMPA. - 70:6(2017), pp. 1084-1114. [10.1002/cpa.21668]

Existence and uniqueness for a crystalline mean curvature flow

MORINI, MASSIMILIANO;Ponsiglione, Marcello
2017

Abstract

An existence and uniqueness result, up to fattening, for a class of crystalline mean curvature flows with natural mobility is proved. The results are valid in any dimension and for arbitrary, possibly unbounded, initial closed sets. The comparison principle is obtained by means of a suitable weak formulation of the flow, while the existence of a global-in-time solution follows via a minimizing movement approach.© 2016 Wiley Periodicals, Inc.
2017
Mathematics (all); applied mathematics
01 Pubblicazione su rivista::01a Articolo in rivista
Existence and uniqueness for a crystalline mean curvature flow / Chambolle, Antonin; Morini, Massimiliano; Ponsiglione, Marcello. - In: COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS. - ISSN 0010-3640. - STAMPA. - 70:6(2017), pp. 1084-1114. [10.1002/cpa.21668]
File allegati a questo prodotto
File Dimensione Formato  
Chambolle_Existence_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 284.45 kB
Formato Adobe PDF
284.45 kB Adobe PDF   Contatta l'autore
Chambolle_postprint_Existence_2017.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 222.43 kB
Formato Adobe PDF
222.43 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1120764
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 23
social impact