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Abstract

An existence and uniqueness result, up to fattening, for a class of crystalline
mean curvature flows with natural mobility is proved. The results are valid in
any dimension and for arbitrary, possibly unbounded, initial closed sets. The
comparison principle is obtained by means of a suitable weak formulation of the
flow, while the existence of a global-in-time solution follows via a minimizing
movements approach. c© 2000 Wiley Periodicals, Inc.

1 Introduction

In this paper we deal with the anisotropic mean curvature motion; that is, flows
of sets t 7→ E(t) (formally) governed by the law

(1.1) V (x, t) =−m(νE(t))κ
E(t)
φ

(x),

where V (x, t) stands for the (outer) normal velocity of the boundary ∂E(t) at x, φ is
a given norm on RN representing the surface tension, κ

E(t)
φ

is the anisotropic mean
curvature of ∂E(t) associated with the anisotropy φ , and m is a positive mobility
which depends on the outer unit normal νE(t) to ∂E(t). Such an evolution law
may be regarded as the gradient flow (with respect to a suitable formal Riemannian
structure) of the anisotropic perimeter functional

(1.2) Pφ (E) =
∫

∂E
φ(νE)dH N−1,

the anisotropic curvature κE
φ

of ∂E being nothing but the first variation of (1.2) at
E. When φ is differentiable in RN \{0}, then κE

φ
is given by

(1.3) κ
E
φ = div

(
∇φ(νE)

)
.
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However, we are particularly interested in the case when φ is not differentiable, for
instance the crystalline case, when the unit ball Bφ := {φ ≤ 1}, known as the Frank
diagram, is a convex polytope. In the latter case, we will only consider the natural
mobility given by m = φ . With this choice, (1.1) has the interesting property that
the flow starting from a Wulff shape, that is, a level set of the polar φ ◦ of φ , consists
in a one-parameter family of shrinking Wulff shapes that extinguish in finite time.
We recall that Wulff shapes are the only solutions to the isoperimetric problem
associated with Pφ (see [25]).

The law (1.1) is used to describe several phenomena in Materials Science and
Crystal Growth, see for instance [42, 34]. From the mathematical point of view,
the geometric motion is well defined in a classical sense in the smooth case, that is,
when φ is at least C3,α (as well as the initial surface, and except at the origin) and
“elliptic” (which means for instance that φ 2 is strongly convex) [2]. Of course, the
classical mean curvature flow falls within this class and corresponds to the choice
φ = Euclidean norm. In the smooth case, the main mathematical difficulties are
related to the fact that singularities (like pinching) may form in finite time (see for
instance [33]) in dimensions N ≥ 3. Thus, the strong formulation of (1.1), which
requires smoothness of the evolving sets, is well defined only for short times and
one needs a weaker notion of solution that can handle the presence of singulari-
ties in order to define the flow for all positive times. When φ is smooth, this task
has been already accomplished and different approaches have been proposed in
the literature, starting from the pioneering work by Brakke [14], who suggested a
weak formulation of the motion by mean curvature yielding deep regularity results
but lacking uniqueness. These uniqueness issues have been subsequently over-
come via the so-called level set approach [39, 23, 20, 30]. In particular, the case
of (1.1) for m,φ of class C2 is covered by [20]. The main idea is to represent the
initial set as the zero sublevel set of a function u0 and then to let all these level
sets evolve according to the same geometric law (which makes sense thanks to the
fact that the evolutions which we consider preserve inclusion). This procedure de-
fines a time-dependent function u(x, t) and transforms the geometric equation into
a (degenerate) parabolic equation for u, which is shown to admit a unique viscosity
solution with the prescribed initial datum u0. The evolution of the zero sublevel
set of such a solution defines a generalized motion (see also [10]), which exists for
all times and agrees with the classical one for short times, before the appearance
of singularities (see [24]). Such a motion satisfies a comparison principle and is
unique whenever the level sets of u have zero Lebesgue measure, i.e., whenever
the so-called fattening phenomenon does not occurs. Fattening may in fact appear
even for a smooth initial datum E0 (see [7]), but its occurrence is in some sense
very “rare”: for instance, it is easy to understand that almost all the sublevels sets of
the signed distance function from any given set E0 will not generate any fattening.

A third approach is represented by the minimizing movements scheme devised
by Almgren, Taylor and Wang [2] and Luckhaus and Sturzenhecker [37]. It con-
sists in constructing a sequence of discrete-in-time evolutions by iteratively solving
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suitable incremental minimum problems. Any limit of these evolutions as the time
step vanishes defines a motion, which exists for all positive times (and is shown
to be Hölder-continuous in time for the L1 norm). The connections between the
generalized level set motion and Brakke solutions has been investigated in [35]. A
simple proof of convergence of the Almgren-Taylor-Wang (ATW) to the general-
ized motion is shown in [19], while a consistency result was already shown in [2].
See also [21] for a similar convergence proof in a more general setting (allowing
for unbounded surfaces, as in the present paper), and [36] for new proofs and a
generalization to partitions. Roughly speaking, it turns out that whenever fattening
does not occur, the generalized level set motion coincides with the ATW flow and
is also a solution in the sense of Brakke.

Let us now consider a crystalline anisotropy. This case is more difficult, due to
the lack of smoothness in the involved differential operators. Indeed, the crystalline
normal ∇φ(νE) is not uniquely defined for some directions and one needs to look
at suitable selections of the (multivalued) subdifferential map, that is, vector fields
z : ∂E → RN , such that z(x) ∈ ∂φ(νE(x)) for a.e. x. If there exists an admissible
field z with tangential divergence div τz in L2(∂E), then the crystalline curvature is
given by the tangential divergence of z, where div τz has minimal L2-norm among
all admissible fields (see [12, 28]). In particular, the crystalline curvature has a
nonlocal character.

Showing (even local-in-time) existence and uniqueness for crystalline mean
curvature flows is somewhat harder and still largely open. Only in dimension 2,
the problem has been settled by developing a crystalline version of the viscosity
approach for the level-set equation, see [27]. If the initial set is itself an appropriate
planar crystal, the evolution equation boils down to a system of ODEs which has
been studied in many former works, see in particular [3, 8, 26, 31], while existence
and uniqueness of strong solutions for initial “regular” (in an appropriate sense)
sets was shown recently in [16]. One advantage of the level-set approach of [27]
is the ability to address much more general equations where the speed depends on
the crystalline curvature and the normal in a nonlinear way.

In dimensions N ≥ 3, the only general available notion of global-in-time solu-
tion we are aware of is the minimizing movements motion provided by the ATW
scheme; however, no general comparison results have been established so far.
In fact, the higher-dimensional uniqueness results we know of deal with special
classes of initial data (for instance convex initial data as in [15, 13] or polyhe-
dral sets as in [32]) or with very specific anisotropies (see [28] where a com-
parison principle valid in all dimensions has been established for the anisotropy
φ(ν) = |ν ′|+ |νN |, with νN := ν ·eN and |ν ′| the Euclidean norm of the orthogonal
projection of ν onto e⊥N ). However, Y. Giga has recently announced a very gen-
eral existence and uniqueness result in the viscosity sense in dimension N = 3 (see
[29]).

In this paper we prove a global-in-time existence and uniqueness (up to possible
fattening) result for the crystalline mean curvature flow valid in all dimensions, for
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arbitrary (possibly unbounded) initial sets, and for general crystalline anisotropies
φ , but under the particular choice m = φ in (1.1). We do so by providing a suitable
weak formulation of the problem and then by showing that such a notion yields a
comparison principle. We then implement a variant of the ATW scheme to establish
an existence result.

Le us describe our approach in more details. It is based on ideas of [41, 6]. In
order to motivate our formulation, let us assume for a moment that φ is smooth
and that t 7→ E(t) is a regular flow obeying (1.1). Set d(·, t) := dist(·,E(t)), where
dist denotes the distance induced by the polar norm φ ◦ (see (2.1) and (2.3) below).
Then it is easy to see that the time partial derivative ∂td of d on ∂E(t) equals
−V/φ(νE(t)), with V denoting the outer normal velocity of the moving boundary.
The quantity V/φ(νE(t)) is nothing but the speed of the moving boundary along
the Cahn-Hoffmann normal ∇φ(νE(t)), see [34, 12]. By the above observations,
(1.1) may be rewritten as

∂td = κ
E(t)
φ

= div(∇φ(∇d)) on ∂E(t) = ∂{d(·, t) = 0}.

(Here and throughout the paper ∇ stands for the spatial gradient.) On the other
hand, if we look at a positive s-level set of d, the (weighted) normal velocity of
x ∈ {dist(·, t) = s} equals the normal velocity of its projection y on ∂E(t), which
is given by the anisotropic curvature κ

E(t)
φ

(y) of ∂E(t) at y. Since (as long as the
surfaces are smooth)

κ
{d(·,t)≤s}
φ

(x) = div(∇φ(∇d))(x, t)≤ κ
E(t)
φ

(y),

we deduce that

(1.4) ∂td ≥ div(∇φ(∇d)) in {d > 0}

as long as E(·) is nonempty. In words, the positive level sets of the distance func-
tion shrink with a velocity which is higher than that given by the anisotropic cur-
vature, and thus they may be regarded as super-flows or supersolutions of the geo-
metric motion. Analogously, setting dc(·, t) := dist(·,Ec(t)), where Ec stands for
the complement of E, we have

(1.5) ∂tdc ≥ div(∇φ(∇dc)) in {dc > 0}

as long as Ec(·) is nonempty. We may conclude that a smooth flow t 7→ E(t) of
sets solves (1.1) if and only if (1.4) and (1.5) are satisfied.

As already remarked before, when φ is crystalline ∇φ(∇d) may not be defined
and must be replaced in general by a suitable selection of the subdifferential map,
that is, by a vector-field z ∈ L∞({d > 0};RN) such that z(x) ∈ ∂φ(∇d(x)) for a.e.
x, where ∂φ denotes the subdifferential of φ . Any such z will be called admissible
for d.
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The above discussion motivates the following weak formulation of the crys-
talline flow: we will say that a one-parameter family t 7→ E(t) of closed sets, sat-
isfying suitable continuity properties (see Definition 2.1 below) is a weak superso-
lution of (1.1) with initial datum E0 if E(0) ⊆ E0 and there exists a vector-field z,
admissible for d, such that (1.4) hold in the sense of distributions, with ∇φ(∇d)
replaced by z. We will say instead that t 7→ E(t) is a weak-subsolution of (1.1) if
E(0)⊇E0 and t 7→ (E̊(t))c is weak supersolution. Finally, we will say that t 7→E(t)
is a weak solution if it is both a weak sub- and a supersolution (with initial datum
E0). Mostly for technical reasons, we will require in addition that the positive part
of divz is bounded in {d ≥ δ} for all δ > 0.

Let us notice that this formulation of the curvature flow in terms of the distance
function has been already exploited for the standard mean curvature motion and its
regular anisotropic variants. In fact, it is close in spirit to the distance formulation
proposed and studied in [41], although it is somewhat stronger as it require the
differential inequalities to hold in a distributional sense, rather than in the viscosity
sense considered in [41]. In this respect, our formulation is reminiscent of the
approach developed in [15].

We now describe the plan of the paper. In Section 2, after recalling some
preliminaries definitions and introducing the main notation, we give the precise
weak formulation of the sub- and supersolutions to the anisotropic mean curvature
flow. In Section 3 we establish a comparison principle between sub- and super-
solutions, which by standard arguments yields the uniqueness of the crystalline
flow whenever fattening does not occur. We remark that the distributional for-
mulation described above allows for a proof of the comparison, which is closer
in spirit to the uniqueness proofs for standard parabolic equations. In particular,
our argument is more elementary than the typical “viscosity” proof that is based
on delicate regularization procedures and fine differentiability properties of semi-
convex functions. In Section 4 we provide an existence result for the the weak
formulation of the crystalline flow, which is based on the reformulation of the min-
imizing movements scheme of Almgren-Taylor-Wang / Luckhaus-Sturzenhecker
introduced in [17, 15]. Such a variant can be considered as a combination of the
ideas of [2] and the threshold dynamics algorithm studied in [22], and has sev-
eral advantages: for instance, it makes it easier to establish a comparison principle
for the discrete-in-time evolutions and it works equally well for bounded and un-
bounded sets (as already exploited in [21]). In the main theorem of the section (see
Theorem 4.5) we establish the convergence of the minimizing movements scheme
to a weak solution, whenever no fattening occurs.

We conclude this introduction by commenting on the restriction m = φ in (1.1).
Although such a mobility is rather natural (for instance it forces Wulff shapes to
evolve in a self-similar way), it is not the most general case and different mobili-
ties could be considered as physically interesting. However, at the moment, in the
crystalline case we are able to provide the right convergence estimates for the min-
imizing movements scheme only under this assumption; the main technical reason
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is related to the fact that if dist is the distance induced by the polar norm φ ◦, then
the crystalline curvatures of the positive level sets of dist(·,E) are bounded above
(this can be easily understood since in this case the sublevel sets of dist(·,E) ad-
mit an inner tangent Wulff shape at all points of the boundary). Nevertheless, we
remark that in the case of a smooth elliptic anisotropy, all our results and methods
would work with any mobility m, thus showing that the viscosity solutions already
studied in [23, 20, 41] satisfy in fact a stronger (distributional) formulation. The
extension of our results to more general mobilities in the crystalline case will be
the subject of future investigations.

2 A weak formulation of the crystalline mean curvature flow

In this section we introduce a suitable weak formulation of the crystalline mean
curvature flow. Such a notion of solution resembles the formulation due to [41].
However, here we will not consider the viscosity setting of [41] and we will rather
be concerned with distributional solutions (which appear for instance in [15]).

2.1 Preliminaries
In this subsection we introduce the main objects and notation used throughout

the paper.
Let φ denote a fixed norm on RN , that is, a convex, even and 1-homogeneous

real-valued function, which will play the role of the anisotropic interfacial energy
density. In the terminology of crystal growth this is also called surface tension.
Note that we do not assume any further regularity on φ and in fact the main case of
interest is when φ is crystalline, that is, when the associated unit ball is a convex
polytope. The interfacial energy is then given by

Pφ (E) := sup
{∫

E
divζ dx : ζ ∈C1

c (RN ;RN), φ
◦(ζ )≤ 1

}
,

where we recall that the polar norm φ ◦ is defined as

(2.1) φ
◦(ξ ) := sup

φ(η)≤1
η ·ξ .

It can be checked that Pφ (E) is finite if and only if E is a set of finite perimeter and,
in this case,

Pφ (E) =
∫

∂ ∗E
φ(νE)dH N−1 ,

where ∂ ∗E denotes the so-called reduced boundary of E (see for instance [5]).
More generally, given a function u ∈ BVloc(RN) we may consider the anisotropic
total variation maesure of u, which on the open (bounded if u 6∈ BV (RN)) subsets
Ω⊂ RN is defined as

φ(Du)(Ω) := sup
{∫

Ω

udivζ dx : ζ ∈C1
c (Ω;RN), φ

◦(ζ )≤ 1
}
.
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Because of the homogeneity of φ it turns out that φ(Du) coincides with the nonneg-
ative Radon measure in RN given by φ(∇u)dx+φ

(
Dsu
|Dsu|

)
|Dsu|, where ∇u stands

for the absolutely continuous part of Du and Dsu
|Dsu| denotes the Radon-Nykodim de-

rivative of the singular part Dsu of Du with respect to its (isotropic) total variation
|Dsu|, see [5].

Among the important properties of φ and φ ◦ let us mention the fact that ∂φ(0)=
{ξ : φ ◦(ξ )≤ 1} while ∂φ ◦(0) = {ξ : φ(ξ )≤ 1}. Moreover, for η 6= 0
(2.2)
∂φ(η) = {ξ : φ

◦(ξ )≤ 1 and ξ ·η = φ(η)}= {ξ : φ
◦(ξ ) = 1 and ξ ·η = φ(η)}

(and the symmetric statement for φ ◦). An easy consequence of the above charac-
terization is that if η ∈ ∂φ ◦(x) and x 6= 0, then x/φ ◦(x) ∈ ∂φ(η).

The set
W (0,1) := {y : φ

◦(y)≤ 1}
is called the Wulff shape associated with φ . More generally, for x ∈ RN and R > 0,
we will denote by

W (x,R) := {y : φ
◦(y− x)≤ R}

the Wulff shape of radius R and center x. In the Finsler metric framework associ-
ated with φ ◦, Wulff shapes play the same role as standard balls do in the Euclidean
setting. In particular, it is well-known that W (0,R) is the unique (up to translations)
solution of the anisotropic isoperimetric problem

min
{

Pφ (E) : |E|= |W (0,R)|
}
,

see for instance [25].
Given a set E ⊆RN , we denote by dist(·,E) the distance from E induced by φ ◦,

that is, for any x ∈ RN

(2.3) dist(x,E) := inf
y∈E

φ
◦(x− y)

if E 6= /0 and dist(x, /0) :=+∞. Moreover, we denote by dE the signed distance from
E induced by φ ◦, i.e.,

dE(x) := dist(x,E)−dist(x,Ec)

so that dist(x,E) = dE(x)+ and dist(x,Ec) = dE(x)− (here and throughout the paper
we adopt the standard notation t+ := t∨0 and t− := (−t)+). Note that φ(∇dE) = 1
a.e. in RN \∂E.

We finally recall the notion of Kuratowski convergence. We say that a sequence
of closed sets En in Rm converges to a closed set E in the Kuratowki sense, and we
write

En
K−→ E,

if the following conditions are satisfied:

(i) if xn ∈ En, any limit point of {xn} belongs to E;
(ii) any x ∈ E is the limit of a sequence {xn}, with xn ∈ En.
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One can easily see that En
K−→ E if and only if dist(·,En)→ dist(·,E) locally uni-

formly in Rm (here one may consider the distance associated to any norm). In
particular, by the Ascoli-Arzelà Theorem, any sequence of closed sets admits a
subsequence which converges in the Kuratowski sense.

2.2 A weak formulation of the crystalline flow
In this subsection we introduce the weak formulation of the crystalline flow we

will deal with. We refer the reader to the introduction for the motivation behind
this definition.

Definition 2.1. Let E0 ⊂RN be a closed set. Let E be a closed set in RN× [0,+∞)
and for each t ≥ 0 denote E(t) := {x ∈ RN : (x, t) ∈ E}. We say that E is a super-
solution of the curvature flow (1.1) with initial datum E0 if

(a) E(0)⊆ E0;
(b) for all t ≥ 0 if E(t) = /0, then E(s) = /0 for all s > t;

(c) E(s) K−→ E(t) as s↗ t for all t > 0 (left-continuity);
(d) setting d(x, t) := dist(x,E(t)) for (x, t) ∈ RN× (0,T ∗)\E and

T ∗ := inf{t > 0 : E(s) = /0 for s≥ t} ,
then the inequality

(2.4) ∂td ≥ divz

holds in the distributional sense in RN × (0,T ∗) \ E for a suitable z ∈
L∞(RN× (0,T ∗);RN) such that z ∈ ∂φ(∇d) a.e., divz is a Radon measure
in RN×(0,T ∗)\E, and (divz)+ ∈ L∞({(x, t)∈RN×(0,T ∗) : d(x, t)≥ δ})
for every δ > 0.

We say that A, open set in RN× [0,+∞), is a subsolution with initial datum E0

if Ac is a supersolution with initial datum (E̊0)c.
Finally, we say that E, closed set in RN × [0,+∞), is a solution with initial

datum E0 if it is a supersolution and if E̊ is a subsolution, both with initial datum
E0.

Remark 2.2. Notice that the initial condition for subsolutions may be rewritten as
E̊0⊆A(0). In particular, if ∂E0 = ∂ E̊0 and E is a solution according to the previous
definition, then E(0) = E0.

Remark 2.3. If φ is C2, then one can check that this definition is stronger than the
definition in the viscosity sense (see in particular [41, 10]).

We start by observing some useful continuity properties of the map d introduced
in the previous definition.

Lemma 2.4. Let E be a supersolution. Then, for each t ∈ [0,T ∗), d(·,s) converges
locally uniformly in {x : d(x, t) > 0} as s↘ t to for some function dr with dr ≥
d(·, t) in {x : d(x, t)> 0}.
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Proof. By condition (d) of Definition 2.1, the distributional derivative ∂td is a
Radon measure in RN × (0,T ∗) \E, so that d is locally a function with bounded
variation in this (open) domain. In particular, for a.e. x ∈ RN the map s 7→ d(x,s)
has a right limit dr(x, t) at each time t ∈ [0,T ∗) such that d(x, t) > 0. Since the
functions d(·,s) are also equi-Lipschitz in space as s varies, we may conclude that
the right limit is in fact locally uniform in {x : d(x, t)> 0}.

Since E is closed, for every t ∈ [0,T ∗] we clearly have that all Kuratowski
cluster points of E(s) as s→ t are contained in E(t). In other words, one has
d(x, t)≤ liminfs→t d(x,s). Thus, dr ≥ d(·, t) in {x : d(x, t)> 0}. �

Remark 2.5. Observe that by condition (c) in the definition (which is mostly tech-
nical and forbids artificial constructions such as a supersolution which jumps to
E(t) = RN at a given time t > 0), t 7→ d(·, t) := d(·,E(t)) is left-continuous with
respect to the local uniform convergence.

3 Comparison results

In this section we prove the main comparison principle between sub- and super-
solutions (see Theorem 3.3). In Lemma 3.2 below, we establish a first (suboptimal)
comparison result between a supersolution and a suitable anisotropic total variation
flow (see [11, 38]). To this aim, we give an explicit solution to the anisotropic total
variation flow with initial datum φ ◦.

Lemma 3.1. The pair ( f ,ζ ) defined by

(3.1) f (x, t) :=

{
r(t)+ t N−1

r(t) if φ ◦(x)≤ r(t) :=
√

(N +1)t,

φ ◦(x)+ t N−1
φ◦(x) otherwise

and

(3.2) ζ (x, t) :=

{
x

r(t) if φ ◦(x)≤ r(t),
x

φ◦(x) if φ ◦(x)≥ r(t),

solve the following Cauchy problem for the φ -total variation flow in RN:

(3.3)


∂t f = divζ a.e. in RN× (0,+∞),

ζ ∈ ∂φ(∇ f ) a.e. in RN× (0,+∞),

f (·,0) = φ ◦.

Moreover, given λ > 1, the pair ( fλ ,ζλ ) given by

fλ (x, t) := λ f (x, t/λ ) ζλ (x, t) := ζ (x, t/λ )

for (x, t) ∈ RN× (0,+∞) solves (3.3), with the initial datum φ ◦ replaced by λφ ◦.

Proof. Recalling that ζ ∈ ∂φ(∇ f ) is equivalent to φ ◦(ζ )≤ 1, ζ ·∇ f = φ(∇ f ) (see
(2.2)), the proof follows by direct verification. The details are left to the reader. �
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Next lemma provides a first comparison estimate, which is far from being sharp.
However, the optimal estimate can be established a posteriori as a consequence of
our main comparison theorem (see Theorem 3.3 below).

Lemma 3.2. Let E be a supersolution and d := dist(·,E(·)) the associated one
parameter family of distance functions. Assume that for some (x̄, t̄)∈RN× [0,+∞)
we have d(x̄, t̄)≥ R> 0. Then, there exists a constant χN > 0 such that d(x̄, t̄+s)≥
R−χN

√
s for all s ∈ [0,R2/(16χ2

N)].

Proof. Observe first that thanks to Lemma 2.4, since d(·, t̄) ≥ R/4 in {x : φ ◦(x−
x̄)≤ 3R/4}=W (x̄,3R/4), there exists a (unknown) time t∗ such that d(·, t̄ + s)>
α > 0 in W (x̄,3R/4) for all s ∈ [0, t∗] for some positive α . We will compare d with
the solution δ of the φ -total variation flow starting from

δ (·,0) := R− 4
3

φ
◦(·− x̄) .

More precisely, if we introduce δ (x,s) := R− f4/3(x− x̄,s), where for any β > 0,
fβ (x, t) := β f (x, t/β ) and f is given by (3.1), by Lemma 3.1 the function δ satisfies

(3.4)

{
∂tδ = divξ in RN× (0,+∞),

ξ ∈ ∂φ(∇δ ) a.e. in RN× (0,+∞),

where ξ (x, t) = −ζ (x,3t/4), with ζ defined by (3.2). Note that δ is negative out-
side W (x̄,3R/4) for all positive times.

Let Ψ(s) be a smooth, convex, nonnegative function, which vanishes only for
s ≤ 0, and consider the function w(x,s) := Ψ(δ (x,s)− d(x, t̄ + s)). Without loss
of generality, we assume to simplify the notation that t̄ = 0. By construction,
w(x,0)≡ 0 in W (x̄,3R/4) and w(·,s)≡ 0 on ∂W (x̄,3R/4) for 0≤ s≤ t∗.

Since φ(∇d)≤ 1 a.e. and ∂td is a measure wherever d is positive, it follows that
d is a function in BVloc(W (x̄,3R/4)× (0, t∗)) and its distributional time derivative
has the form

∂td = ∑
t∈J

[d(·, t +0)−d(·, t−0)]dx+∂
d
t d

where J is the (countable) set of times where d jumps and ∂ d
t d is the diffuse

(Cantor+absolutely continuous) part of the derivative. It turns out that d(·, t +
0)− d(·, t − 0) ≥ 0 for each t ∈ J (cf Lemma 2.4). Moreover, since the positive
part of divz is absolutely continuous with respect to the Lebesque measure, (2.4)
entails

∂
d
t d ≥ divz.

Using the chain rule for BV functions, see [4]), one has

∂tw = ∑
t∈J

[Ψ(δ (·, t)−d(·, t +0))−Ψ(δ (·, t)−d(·, t−0))]dx

+Ψ
′(δ −d)(∂tδ −∂

d
t d)≤Ψ

′(δ −d)(divξ −divz).
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Hence, for a.e. t ≤ t∗, using the fact that φ and Ψ are convex, Ψ′(δ −d) vanishes
on ∂W (x̄,3R/4) and recalling (3.4), we have

∂t

∫
W (x̄,3R/4)

wdx≤
∫

W (x̄,3R/4)
Ψ
′(δ −d)(divξ −divz)

=−
∫

W (x̄,3R/4)
(ξ − z) · (∇δ −∇d)Ψ′′(δ −d)≤ 0.

It follows that w = Ψ(δ −d) = 0, that is, d ≥ δ a.e. at all times less than t∗. More
precisely, for 0≤ s≤ t∗ we have

(3.5) d(x̄, t̄ + s)≥ R− f4/3(x− x̄,s) = R− 4N√
3

√
s

N +1
=: R−χN

√
s.

It follows that d(x̄, t̄ + s) > 3R/4 and, in turn, d(·, t̄ + s) > 0 on ∂W (x̄,3R/4) for
all s < min{t∗,R2/(16χ2

N)}. But then we can restart the argument above to find
that (3.5) remains valid for slightly larger times. Thus, we may conclude that (3.5)
holds at least for all 0≤ s≤ R2/(16χ2

N). This concludes the proof of the lemma.
�

Now we can state the main result of this section, which is a comparison result
between sub- and supersolutions.

Theorem 3.3. Let E be a supersolution with initial datum E0 and F be a subso-
lution with initial datum F0. Assume that dist(E0,F0c

) =: ∆ > 0. Then for each
t ≥ 0, dist(E(t),Fc(t))≥ ∆.

Proof. Let T ∗E and T ∗F be the maximal existence time for E and F . For all t >
min{T ∗E ,T ∗F } we have that either E or Fc is empty. In this case, clearly the conclu-
sion holds true.

Now, consider the case t ≤min{T ∗E ,T ∗F } (and assume without loss of generality
that T ∗E ,T

∗
F > 0). Let us fix 0 < η1 < η ′1 < η ′′1 < η ′′2 < η ′2 < η2 < ∆. We will show

the conclusion of the theorem for a time interval (0, t∗) for a suitable t∗ depending
only on η1, η ′1, η ′′1 , η ′′2 , η ′2, η2, and ultimately only on ∆. It is clear then that reiter-
ating the argument yields the conclusion of the theorem for all times. We recall that
dE(x, t) := dist(x,E(t))− dist(x,Ec(t)) and dF is defined analogously. We denote
by zE and zF the fields appearing in the definition of super- and subsolutions (see
Definition 2.1), corresponding to E and F , respectively. Define

S := {x ∈ RN : η1 < dE(x,0)< η2}

and note that by Lemma 3.2 there exists t∗ > 0 depending only on η1, ∆−η2 such
that

(3.6)
dE(x, t)≥ dE(x,0)−χN

√
t

dF(x, t)≤ dF(x,0)+χN
√

t
for all x ∈ S and t ∈ (0, t∗).
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We now set

d̃E := dE ∨ (η ′1 +χN
√

t) ,

d̃F := (dF +∆)∧ (η ′2−χN
√

t) .

Clearly, by our assumptions d̃E(·,0)≥ d̃F(·,0). We claim that

(3.7) d̃E ≥ d̃F on ∂S× (0, t∗) .

Here and in the rest of the proof we may assume without loss of generality that t∗

is as small as needed (but still depending only on ∆). To this aim, write ∂S = Γ1∪
Γ2, where Γ1 := {dE(·,0) = η1} and Γ2 := {dE(·,0) = η2}. Since dF(·,0)+∆ ≤
dE(·,0) = η1 on Γ1, we deduce

d̃F ≤ dF +∆≤ η1 +χN
√

t ≤ η
′
1 ≤ d̃E

on Γ1× (0, t∗). Similarly one can show that the inequality d̃E ≥ d̃F holds on Γ2×
(0, t∗).

Again by (3.6) we have

(3.8) dE ≥
η ′′1
2

> 0 in {dE(·,0)≥ η
′′
1 }× (0, t∗)

and, observing that dF(·,0)≤ η ′′2 −∆ in {dE(·,0)≤ η ′′2 },

(3.9) dF ≤
η ′′2 −∆

2
< 0 in {dE(·,0)≤ η

′′
2 }× (0, t∗) .

In particular
E(t)⊂⊂ F(t) for t ∈ (0, t∗) .

We now claim that, setting

S′′ := {x ∈ RN : η
′′
1 < dE(x,0)< η

′′
2 },

we have

(3.10) d̃E = dE and d̃F = dF +∆ in S′′× (0, t∗) .

Indeed by (3.6) we have

dE(x, t)≥ η
′′
1 −χN

√
t ≥ η

′
1 +χN

√
t for (x, t) ∈ S′′× (0, t∗)

and thus d̃E = dE in S′′ × (0, t∗). The proof of the second identity in (3.10) is
analogous.

Now we will use quite standard parabolic maximum principles, like in the proof
of Lemma 3.2. Notice that

∂t d̃E = ∑
t∈J

[d̃E(·, t +0)− d̃E(·, t−0)]dx+∂
d
t d̃E ,
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where J is the (countable) set of times where dE possibly jumps and ∂ d
t d̃E is the

diffuse part of the distributional derivative. Using for instance the chain rule proved
in [4], in S× (0, t∗) we have that

∂
d
t d̃E =

{
χN

2
√

t a.e. in {(x, t) : η ′1 +χN
√

t > dE(x, t)} ,
∂ d

t dE |∂ d
t dE |-a.e. in {(x, t) : η ′1 +χN

√
t ≤ dE(x, t)} .

An analogous formula holds for ∂ d
t d̃F . Recalling that (divzE)

+ and (divzF)
− be-

long to L∞(S× (0, t∗)) it follows that (possibly modifying t∗)

(3.11) ∂
d
t d̃E ≥ divzE and ∂

d
t d̃F ≤ divzF

in the sense of measures in S× (0, t∗). Note also that a.e. in S× (0, t∗)

(3.12) zE ∈ ∂φ(∇d̃E) and zF ∈ ∂φ(∇d̃F) .

Fix p > N and set Ψ(s) := (s+)p and w := Ψ(d̃F − d̃E). By (3.7) we have

(3.13) w = 0 on ∂S× (0, t∗) .

Using as before the chain rule for BV functions, recalling (3.11) and the fact that
the jump parts of ∂t d̃E and ∂t d̃F are nonnegative and nonpositive, respectively, we
have

(3.14) ∂tw≤Ψ
′(d̃F − d̃E)(∂

d
t d̃F −∂

d
t d̃E)≤Ψ

′(d̃F − d̃E)(divzF −divzE)

in S×(0, t∗). Choose a cut-off function η ∈C∞
c (RN) such that 0≤ η ≤ 1 and η ≡ 1

on B1. For every ε > 0 we set ηε(x) := η(εx). Using (3.13) and (3.14), we have

∂t

∫
S

wη
p
ε dx≤

∫
S

η
p
ε Ψ
′(d̃F − d̃E)(divzF −divzE)

=−
∫

S
η

p
ε Ψ
′′(d̃F − d̃E)(zF − zE) · (∇d̃F −∇d̃E)dx+

p
∫

S
η

p−1
ε Ψ

′(d̃F − d̃E)∇ηε · (zF − zE)dx

≤ p
∫

S
η

p−1
ε Ψ

′(d̃F − d̃E)∇ηε · (zF − zE)dx,

where we have also used the inequality (zF−zE) ·(∇d̃F−∇d̃E)≥ 0, which follows
from (3.12) and the convexity of φ . By Hölder Inequality and using the explicit
expression of Ψ and Ψ′, we get

∂t

∫
S

wη
p
ε dx≤Cp2‖∇ηε‖Lp(RN)

(∫
S

wη
p
ε dx
)1− 1

p

,

for some constant C > 0 depending only on the L∞-norms of zE and zF . Since
w = 0 at t = 0, a simple ODE argument then yields∫

S
wη

p
ε dx≤

(
Cp‖∇ηε‖Lp(RN)t

)p
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for all t ∈ (0, t∗). Observing that ‖∇ηε‖p
Lp(RN)

= ε p−N‖∇η‖p
Lp(RN)

→ 0 and ηε ↗ 1

as ε→ 0+, we conclude that w = 0, and in turn d̃E ≥ d̃F in S×(0, t∗). In particular,
by claim (3.10), we have shown that dE ≥ dF +∆ in S′′× (0, t∗). We finally claim
that dist(E(t),Fc(t))≥ ∆ for t ∈ (0, t∗). To see this, fix ε ≥ 0, and let let x ∈ ∂E(t)
and y ∈ ∂F(t) be such that φ ◦(x− y) ≤ dist(E(t),Fc(t))+ ε . Note that by (3.8)
and (3.9) we have dE(x,0)< η ′′1 and dE(y,0)> η ′′2 . Thus there exists z∈ S′′∩ [x,y],
where [x,y] denotes the segment joining x and y. Since dE(·, t)≥ dF(·, t)+∆ in S′′,
we have

(3.15) dist(E(t),Fc(t))≥ φ
◦(x− y)− ε = φ

◦(x− z)+φ
◦(z− y)− ε ≥

−dF(z, t)+dE(z, t)− ε ≥ ∆− ε.

The claim follows by the arbitrariness of ε , and this concludes the proof of the
theorem. �

4 Existence via minimizing movements

In this section we prove an existence result for the crystalline curvature flow, ac-
cording to Definition 2.1. Such a solution is obtained via a variant of the Almgren-
Taylor-Wang minimizing movements scheme ([2]) introduced in [17, 15].

4.1 Minimizing movements
Let E0 ⊂ RN be closed. Fix a time-step h > 0 and set E0

h = E0. We then
inductively define Ek+1

h (for all k ∈ N) according to the following procedure: If
Ek

h 6= /0, RN , then let (uk+1
h ,zk+1

h ) : RN → R×RN satisfy

(4.1)

{
−hdivzk+1

h +uk+1
h = dEk

h
,

zk+1
h ∈ ∂φ(∇uk+1

h ) a.e. in RN ,

and set Ek+1
h := {x : uk+1

h ≤ 0}. If either Ek
h = /0 or Ek

h = RN , then set Ek+1
h := Ek

h .
We denote by T ∗h the first discrete time hk such that Ek

h = /0, if such a time exists;
otherwise we set T ∗h = +∞. Analogously, we denote by T ′h

∗ the first discrete time
hk such that Ek

h = RN , if such a time exists; otherwise we set T ′h
∗ =+∞. In Propo-

sition 4.1 below we will show that this construction is well defined, since problem
(4.1) admits a unique solution uk+1

h that is Lipschitz continuous. In particular, Ek+1
h

is a closed set for all k.
Before stating the main facts about the differential problem (4.1), we recall that

given z ∈ L∞(RN ;RN) with divz ∈ L2
loc(RN) and w ∈ BVloc(RN)∩L2

loc(RN), z ·Dw
denotes the Radon measure associated with the linear functional

Lϕ :=−
∫
RN

wϕdivzdx−
∫
RN

wz ·∇ϕ dx for all ϕ ∈C∞
c (RN),

see [9].



A CRYSTALLINE MEAN CURVATURE FLOW 15

Proposition 4.1. Let g ∈ L2
loc(RN). There exists a field z ∈ L∞(RN ;W (0,1)) and a

unique function u ∈ BVloc(RN)∩L2
loc(RN) such that the pair (u,z) satisfies

(4.2)

 −hdivz+u = g in D ′(RN),
φ ◦(z)≤ 1 a.e. in RN ,
z ·Du = φ(Du) in the sense of measures.

Moreover, for any R > 0 and v ∈ BV (BR) with Supp(u− v)b BR,

φ(Du)(BR)+
1
2h

∫
BR

(u−g)2 dx≤ φ(Dv)(BR)+
1

2h

∫
BR

(v−g)2 dx,

and for every s ∈ R the set Es := {x ∈ RN : u(x) ≤ s} solves the minimization
problem

min
F∆EsbBR

Pφ (F ;BR)+
1
h

∫
F∩BR

(g(x)− s)dx.

If g1 ≤ g2 and if u1, u2 are the corresponding solutions to (4.2) (with g replaced
by g1 and g2, respectively), then u1 ≤ u2.

Finally if in addition g is Lipschitz with φ(∇g)≤ 1, then the unique solution u
of (4.2) is also Lipschitz and satisfies φ(∇u) ≤ 1 a.e. in RN . As a consequence,
(4.2) is equivalent to

(4.3)

{
−hdivz+u = g in D ′(RN) ,

z ∈ ∂φ(∇u) a.e. in RN

Proof. See [15, Theorem 2], [1, Theorem 3.3]. �

Remark 4.2 (Consistency with the ATW scheme). When ∂E0 is bounded, the min-
imality property of the level sets stated above shows, in particular, that the sets Ek

h
are constructed according to the Almgren-Taylor-Wang scheme [2].

Since by the previous proposition φ(∇uk+1
h ) ≤ 1 a.e. in RN , one deduces, in

particular, that

(4.4)
uk+1

h ≤ dEk+1
h

in {x : dist(x,Ek+1
h )> 0} ,

uk+1
h ≥ dEk+1

h
in {x : dist(x,Ek+1

h )< 0} .

We are now in a position to define the time discrete evolutions. Precisely, we
set

(4.5)

Eh := {(x, t) : x ∈ E [t/h]
h },

Eh(t) := E [t/h]
h = {x : (x, t) ∈ Eh},

dh(x, t) := dEh(t)(x),

uh(x, t) := u[t/h]
h (x),

zh(x, t) := z[t/h]
h (x),

where [·] stands for the integer part of its argument.
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Remark 4.3 (Discrete comparison principle). The last part of Proposition 4.1 im-
plies that the scheme is monotone, that is, the discrete evolutions satisfy the com-
parison principle. More precisely, if E0 ⊆ F0 are closed sets and if we denote by
Eh and Fh the discrete evolutions with initial datum E0 and F0, respectively, then
Eh(t) ⊆ Fh(t) for all t ≥ 0. Analogously, if E0 ⊂ (F0)c, then Eh(t) ⊂ (Fh(t))c for
all t ≥ 0.

4.2 Comparison with the Wulff shape
In this subsection, we exploit Remark 4.3 to compare the discrete evolutions

(4.5) with the minimizing movements of the Wulff shape and derive an estimate,
which will be useful in the convergence analysis. The evolution starting from a
Wulff shape W (0,R) is explicitly known. Indeed, from [15, Appendix B, Eq. (39)],
the solution of (4.2), with g replaced by dW (0,R) = φ ◦−R, is given by (φ ◦h −R,zh),
where

(4.6) φ
◦
h (x) :=

{√
h 2N√

N+1
if φ ◦(x)≤

√
h(N +1),

φ ◦(x)+h N−1
φ◦(x) otherwise,

and

zh(x) :=


(

2
√

h(N+1)−φ◦(x)
)

x
h(N+1) if φ ◦(x)≤

√
h(N +1),

x
φ◦(x) otherwise.

This can be checked by direct computation. It follows that if E0 = W (0,R), one
has Eh(t) =W (0,rR

h (t)) for a function rR
h that satisfies

rR
h (h) =

R+
√

R2−4h(N−1)
2

if h≤ R2/(4(N +1)). In particular,

rR
h (h)≥

√
R2−4h(N−1)

for the same h’s. By iteration, we have rR
h (t)≥

√
R2−4t(N−1)≥ R√

2
for 0≤ t ≤

R2/(8(N−1)) and h≤ R2/(8(N +1)). Since rR
h (t) = R for t ∈ [0,h), we infer

(4.7) rR
h (t)≥

√
R2−4t(N−1)

for 0≤ t ≤ R2/(8(N +1)) and for all h.
Now we return to the motion from an arbitrary set E0. If for some (x, t) ∈RN×

[0,T ′h
∗) we have dh(x, t)> R, then W (x,R)∩Eh(t) = /0. Hence, by the comparison

principle stated in Remark 4.3 and by (4.7) we have

dh(x,s)≥
√

R2−4(N−1)(s− t +h)

for t < s and s+h− t < R2/(8(N +1)).
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By letting R↗ dh(x, t) we obtain

(4.8) dh(x,s)≥
√

d2
h(x, t)−4(N−1)(s− t +h)

for t < s and s+h− t < d2
h(x, t)/(8(N +1)).

By the same argument, if dh(x, t) < −R for some (x, t) ∈ RN × [0,T ∗h ), then
W (x,R)⊂ Eh(t) and thus, again by the discrete comparison principle and by (4.7)
we have

dh(x,s)≤−
√

R2−4(N−1)(s− t +h)

for t < s and s+h− t < R2/(8(N +1)). Letting R↗−dh(x, t) we obtain

(4.9) dh(x,s)≤−
√

d2
h(x, t)−4(N−1)(s− t +h)

for t < s and s+h− t < d2
h(x, t)/(8(N +1)).

4.3 Convergence of the scheme
Up to a subsequence we have

Ehl

K−→ E and (E̊hl )
c K−→ Ac

for a suitable closed sets E and a suitable open set A⊂ E. Define E(t) and A(t) as
in (4.5).

Observe that if E(t) = /0 for some t ≥ 0, then (4.8) implies that E(s) = /0 for all
s ≥ t so that we can define, as in Definition 2.1, the extinction time T ∗ of E, and
similarly (in view of (4.9)) the extinction time T ′∗ of Ac. Notice that at least one
between T ∗ and T ′∗ is +∞. Possibly extracting a further subsequence, we have the
following result:

Proposition 4.4. There exists a countable set N ⊂ (0,+∞) such that dhl (·, t)+→
dist(·,E(t)) and dhl (·, t)−→ dist(·,Ac(t)) locally uniformly for all t ∈ (0,+∞)\N .

Moreover, for every x ∈ RN the functions dist(x,E(·)) and dist(x,Ac(·)) are
left continuous and right lower semicontinuous. Equivalently, the functions E(·)
and Ac(·) are left continuous and right upper semicontinuous with respect to the
Kuratowski convergence. Finally, E(0) = E0 and A(0) = E̊0.

Proof. By the Ascoli-Arzelà Theorem and a standard diagonal argument, we may
extract a further (not relabeled) subsequence such that dhl (·, t)→ d(·, t) locally
uniformly for all t ∈ Q∩ (0,+∞), where d(·, t) is either a Lipschitz function or
infinite everywhere. In the latter case, either d(·, t)≡+∞ or d(·, t)≡−∞.

We observe that for all t ∈ (0,T ∗)∩Q we have d(·, t) < +∞. To see this we
argue by contradiction assuming that for every x ∈ RN and for every M > 0 we
have dhl (x, t) > M for all l large enough. We may now apply (4.8) to deduce that
there exists a right interval (t, t ′) independent of l such that dhl (x,s)>

M
2 for l large

enough and for all s ∈ (t, t ′); that is, dhl (·,s)→ +∞ for all s ∈ (t, t ′). This in turn
would imply E(s) = /0 for all s ∈ (t, t ′), which is impossible since t < T ∗. Using
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(4.9) instead of (4.8) and arguing similarly, one can show that for all t ∈ (0,T ′∗)∩Q
we have d(·, t)>−∞.

Assume that d(x, t)> 0, t ∈Q∈ (0,∞). Then, dhl (x, t)> 0 for l large enough, so

that by (4.8) dhl (x,s)≥
√

d2
hl
(x, t)−4(N−1)(s− t +hl) for t < s and s+hl− t <

C(N)d2
hl
(x, t), where we have set C(N) := 1/(8(N + 1)). In turn, sending l → ∞,

we obtain

(4.10) d(x,s)≥
√

d2(x, t)−4(N−1)(s− t)

for t,s ∈Q s.t. 0 < s− t <C(N)d2(x, t).

Symmetrically, using (4.9) in place of (4.8), we can deduce that if d(x, t)< 0, then

(4.11) d(x,s)≤−
√

d2(x, t)−4(N−1)(s− t)

for t,s ∈Q s.t. 0 < s− t <C(N)d2(x, t).

Suppose now that limsups∈Q,s→t+ d(x,s) =: R > 0, and let tk → t+ be a sequence

of rational numbers such that d(x, tk)→ R. Fix s ∈Q such that 0 < s− t < C(N)
4 R2.

Since for k large enough we have t < tk < s and d(x, tk)≥ R
2 , we may apply (4.10) to

deduce that for all such k’s we have d(x,s)≥
√

d2(x, tk)−4(N−1)(s− tk). Send-
ing k→ ∞ we obtain d(x,s)≥

√
R2−4(N−1)(s− t) and, in turn,

(4.12) liminf
s∈Q,s→t+

d(x,s)≥ limsup
s∈Q,s→t+

d(x,s) .

If liminfs∈Q,s→t+ d(x,s) < 0, then we may argue in a similar way, using (4.11)
instead of (4.10), to conclude that also in this case (4.12) holds. Summarizing, we
have shown that lims∈Q,s→t+ d(x,s) exists at all t. We denote by d(x, t + 0) such a
right limit.

Assume now that limsups∈Q,s→t− d(x,s) =: R > 0. Let tk→ t− be a sequence of

rational numbers such that d(x, tk)→ R, d(x, tk)≥ R
2 and 0 < t− tk ≤ C(N)

4 R2 for all
k. Analogously, let s j→ t− be a sequence of rational numbers such that d(x,s j)→
liminfs∈Q,s→t− d(x,s). Fix k ∈ N. Then, for all j large enough we have tk < s j <

t, so that we may apply (4.10) and get d(x,s j) ≥
√

d2(x, tk)−4(N−1)(s j− tk).
Sending first k→ ∞ and then j→ ∞ we arrive at

liminf
s∈Q,s→t−

d(x,s)≥ limsup
s∈Q,s→t−

d(x,s) .

The same conclusion can be reached if liminfs∈Q,s→t− d(x,s)< 0, by arguing sim-
ilarly and using (4.11) instead of (4.10). Summarizing, we have shown that also
lims∈Q,s→t− d(x,s) exists at all t. We will denote by d(x, t−0) such a left limit.

Suppose now that limsupl→∞,s→t dhl (x,s) =: R > 0 and let lk → ∞ and tk → t

be such that dhlk
(x, tk)→ R. Let s ∈ Q be such that 0 < s− t < C(N)

8 R2. Then, for

k sufficiently large we have that tk < s, |tk− t| < C(N)
8 R2, dhlk

(x, tk) ≥ R
2 , and s+
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hlk− tk ≤ s+hlk− t + |tk− t|< C(N)
4 R2. We may then apply (4.8) to get dhlk

(x,s)≥√
d2

hlk
(x, tk)−4(N−1)(s+hlk − tk) for k sufficiently large. Sending k → ∞ we

deduce d(x,s) ≥
√

R2−4(N−1)(s− t). In turn, passing to the limit as s→ t+,
s ∈ Q, we conclude that d(x, t + 0) ≥ R = limsupl→∞,s→t dhl (x,s). A similar ar-
gument shows that if d(x, t − 0) > 0, then liminfl→∞,s→t dhl (x,s) ≥ d(x, t − 0).
Arguing symmetrically (and using (4.9) instead of (4.8)), we can also show that
if liminfl→∞,s→t dhl (x,s) < 0, then d(x, t + 0) ≤ liminfl→∞,s→t dhl (x,s) and that if
d(x, t−0)< 0, then limsupl→∞,s→t dhl (x,s)≤ d(x, t−0). All the above discussion
can be summarized as follows:

(4.13)
d(x, t +0)± ≥ limsup

l→∞,s→t
dhl (x,s)

±

≥ liminf
l→∞,s→t

dhl (x,s)
± ≥ d(x, t−0)±.

Let N be the set of all times t such that the left and right limits of d differ at
(x, t), for some x∈RN (we also assume 0∈N ). Notice that N is countable, since
it can be written as the union over k ∈ N and x ∈QN of the times such that the gap
between the right and left limit of d(x, ·) is larger than 1/k (which for k and x fixed
cannot have cluster points). We denote by d(x, t) the common value of the right
and left limits of d(x, ·) at t 6∈N .

By (4.13) we immediately have that liml→∞ dhl (·, t) = d(·, t) for all t 6∈ N .
We now show that for t 6∈ N , we have d(·, t)+ = dist(·,E(t)). This is equiv-
alent to showing that E(t) coincides with the Kuratowski limit K of Ehl (t), since
d(·, t)+= dist(·,K). Clearly, K⊆E(t). Conversely, if x 6∈K, then d(x, t)+=: R> 0.
Since d is continuous at t, we may find ε so small that liml→∞ dhl (x, t − ε) ≥
d(x, t − ε) > R/2 and in turn, by (4.8), W (x,R/4)× [t − ε, t + ε]∩Ehl = /0 for l
large enough. Thus x 6∈ E(t), showing that E(t) = K and d(x, t)+ = dist(x,E(t)).
A similar argument (now relying on (4.9)) yields that d(x, t)− = dist(x,Ac).

Always by (4.8), one can easily prove that E(0)⊆ E0. Since Ehl (0) = E0 for all
l, we infer the equality E(0) = E0. Symmetrically, using (4.9) one can show that
A(0) = E̊0.

Finally, we prove the continuity properties of E(t) (the proof of the continuity
properties of Ac(t) being fully analogous). The right upper semicontinuity with
respect to the Kuratowski convergence is a consequence of the fact that E is closed.
Let us prove now the left continuity. To this aim, denote by K̂ the Kuratowski limit
of E(s) as s↗ t. Clearly K̂ ⊆ E(t). Let now x 6∈ K̂. Then lims↗t dist(x,E(s)) =
dist(x, K̂) =: R > 0. Arguing exactly as before we may choose ε so small that
liminfl dist(x,Ehl (t−ε))≥ dist(x,E(t−ε))> R/2 and W (x,R/4)× [t−ε, t +ε]∩
Ehl = /0 for all l large enough, so that x 6∈E(t). Hence K̂ =E(t). This establishes the
Kuratowski left-continuity of E(·) and concludes the proof of the proposition. �

Theorem 4.5. The set E is a supersolution in the sense of Definition 2.1 with initial
datum E0, while A is a subsolution with initial datum E0.
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Proof. Points (a), (b) and (c) of Definition 2.1 follow from Proposition 4.4. It re-
mains to show (d). Possibly extracting a further subsequence and setting zhl (·, t) :=
0 for t > T ∗hl

if T ∗hl
< T ∗, we may assume that zhl converges weakly-∗ in L∞(RN ×

(0,T ∗);RN) to some vector-field z satisfying φ ◦(z) ≤ 1 almost everywhere. Re-
call that by (4.4) we have uk+1

h ≤ dEk+1
h

, whenever dEk+1
h
≥ 0. In turn, it follows

from (4.1) that

(4.14) divzk+1
h ≤

dEk+1
h
−dEk

h

h
a.e. on {dEk+1

h
≥ 0}.

Consider a nonnegative test function η ∈ C∞
c ((RN × (0,T ∗)) \ E). If l is large

enough, then the distance of the support of η from Ehl is bounded away from zero.
In particular, dhl is finite and positive on Suppη . We deduce from (4.14) that∫ ∫

η(x, t)
(

dhl (x, t +hl)−dhl (x, t)
hl

−divzhl (x, t +hl)

)
dtdx

=−
∫ ∫ (

η(x, t)−η(x, t−hl)

hl
dhl (x, t)− zhl (x, t +hl) ·∇η(x, t)

)
dtdx≥ 0.

Passing to the limit l→ ∞ we obtain (2.4).
Next, we establish an upper bound for divzhl away from Ehl . To this aim observe

that
dEk

h
= min

y∈Ek
h

φ
◦(·− y)

so that, by (4.1) and the comparison principle stated at the end of Proposition 4.1,

uk+1
h ≤ min

y∈Ek
h

φ
◦
h (·− y)

where φ ◦h is given in (4.6). Thus, if dEk
h
(x)≥ R > 0, then

uk+1
h (x)≤ min

y∈Ek
h

φ
◦(x− y)+h

N−1
R

= dEk
h
(x)+h

N−1
R

,

provided h≤ R2/(N +1). As a consequence of (4.1), we obtain

(4.15) divzk+1
h ≤ N−1

R
a.e. in {x : dEk

h
(x)≥ R}.

It is then easy to deduce from the convergence properties of Ehl and dhl that

divz≤ N−1
R

in {(x, t) ∈ RN× (0,T ∗) : d(x, t)> R}

in the sense of distributions. It follows that divz is a Radon measure in RN ×
(0,T ∗)\E, and (divz)+ ∈ L∞({(x, t)∈RN×(0,T ∗) : d(x, t)≥ δ}) for every δ > 0.

We now provide a lower (h-dependent) bound for divzhl . To this aim, note that
if dEk

h
(x) =: R > 0, then dEk

h
≥ R−φ ◦(·− x). Thus, by comparison as before,

uk+1
h (x)≥ R−φ

◦
h (0) = R−

√
h

2N√
N +1

.
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In turn, by (4.1), we deduce

divzk+1
h ≥− 1√

h
2N√
N +1

a.e. in {x : dEk
h
(x)> 0}.

Combining the above inequality with (4.15) and using (4.1) again, we deduce that
for all t ∈ (0,T ∗)\N (where recall that N is introduced in Proposition 4.4) and
any δ > 0

‖uhl (·, t)−dhl (·, t−hl)‖L∞({x:dhl (x,t−hl)≥δ}) ≤
√

hl
2N√
N +1

,

provided that l is large enough. In particular, recalling the convergence properties
of Ehl and dhl (see also (4.13)), we deduce that

(4.16) uhl → d a.e. in RN× (0,T ∗)\E,

with the sequence {uhl} locally (in space and time) uniformly bounded.
Consider now, as before, a nonnegative test function η ∈C∞

c ((RN × (0,T ∗)) \
E). Then, recalling (4.16), we have by lower semicontinuity∫ ∫

φ(∇d)η dxdt ≤ liminf
l

∫ ∫
φ(∇uhl )η dxdt = liminf

l

∫ ∫
(zhl ·∇uhl )η dxdt.

On the other hand,∫ ∫
(zhl ·∇uhl )η dxdt =

∫ ∫
(zhl ·∇d)η dxdt +

∫ ∫
zhl ·∇(uhl −d)η dxdt,

with ∫ ∫
(zhl ·∇d)η dxdt l→∞−→

∫ ∫
(z ·∇d)η dxdt.

Hence, we obtain

(4.17)
∫ ∫

φ(∇d)η dxdt ≤
∫ ∫

(z ·∇d)η dxdt,

provided we show that

(4.18) lim
l

∫ ∫
zhl ·∇(uhl −d)η dxdt = 0.

For each t, set

ml(t) := min
x∈Suppη(·,t)

(
uhl (x, t)−d(x, t)

)
, Ml(t) := max

x∈Suppη(·,t)

(
uhl (x, t)−d(x, t)

)
.

Recall that these quantities are uniformly bounded and converge to 0 at all t 6∈N .
Then, we can write

(4.19)
∫ ∫

zhl ·∇(uhl −d)η dxdt =
∫ ∫

zhl ·∇(uhl −d−ml)η dxdt

=−
∫ ∫

(uhl −d−ml)(zhl ·∇η +ηdivzhl )dxdt.
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For l large enough, since the support of η is at positive distance from E there exists
δ > 0 such that dhl ≥ δ everywhere on this support, so that divzhl ≤ (N−1)/δ . It
follows that

−
∫ ∫

(uhl −d−ml)ηdivzhl dxdt ≥−N−1
δ

∫ ∫
(uhl −d−ml)η dxdt l→∞−→ 0,

thanks also to (4.16). Recalling (4.19), we can conclude that

liminf
l

∫ ∫
zhl ·∇(uhl −d)η dxdt ≥ 0.

In the same way, writing now∫ ∫
zhl ·∇(uhl −d)η dxdt =

∫ ∫
zhl ·∇(uhl −d−Ml)η dxdt

and using uhl −d−Ml ≤ 0 a.e. on Suppη , one can show that

limsup
l

∫ ∫
zhl ·∇(uhl −d)η dxdt ≤ 0

so that (4.18) follows. In turn, (4.17) holds, that is, φ(∇d) ≤ z ·∇d a.e. in RN ×
(0,T ∗) \E. On the other hand, recalling that φ ◦(z) ≤ 1 a.e. in RN × (0,T ∗), we
have

z ·∇d ≤ φ(∇d)
a.e. in RN × (0,T ∗). We conclude that φ(∇d) = z ·∇d and, in turn, z ∈ ∂φ(∇d)
a.e. in RN × (0,T ∗) \E. This concludes the proof that E is a supersolution. The
proof that A is a subsolution is identical. �

Corollary 4.6. Let u0 be a bounded, uniformly continuous in RN . Then for all
s ∈ R but a countable number, the minimizing movement scheme starting from
E0

s = {u0 ≤ s} converges to the unique solution of the curvature flow in the sense
of Definition 2.1, with initial datum E0

s .

Proof. The arguments are standard and rely on the comparison theorem 3.3. The
bad (countable set) is the set of levels for which “fattening” occurs, that is, |E \A|>
0. Observe that from Theorem 3.3, one easily shows the existence of a unique
level-set solution u(x, t) starting from u0, which shares the same spatial modulus
of continuity and is also uniformly continuous in time (see for instance [18, Sub-
section 6.3]). �

We conclude by the following two remarks.

Remark 4.7 (Starshaped initial sets). A natural issue is to understand under which
circumstances fattening does not occur. To our knowledge, there is no general re-
sult, not even for the canonical mean curvature flow. On the other hand, if the
initial set E0 is starshaped, one can build an initial function u0 whose sub-level
sets are homothetic to E0. In view of the homogeneity properties of the crystalline
curvature, all the sub-level sets evolve staying homothetic to each other. As a con-
sequence, fattening does not occurs and the minimizing movement scheme starting
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from E0 converges to the unique solution of the curvature flow in the sense of Defi-
nition 2.1, with initial datum E0. For the mean curvature flow (and in fact for more
general local evolutions), this was already observed and in [10, 40, 41] (see also
[18] for a generalization to a class of nonlocal geometric motions).

Remark 4.8 (Evolution of graphs). Let us assume now that E0 = {(x′,xN)∈RN−1×
R : xN ≤ f (x′)} for some Lipschitz function f :RN−1→R, with Lipschitz constant
L > 0. Then one may take u0(x′,xN) := xN − f (x′) so that all its sub-level sets are
“vertical” translates of E0; indeed, E0

η := {u0 ≤ η}= E0 +η eN for all η ∈ R. By
translation invariance, we can argue as in the previous remark and conclude that
fattening does not occur, uniqueness in the sense of Corollary 4.6 holds for all sub-
level sets, which evolve by preserving the property of being vertical translates of
each other. More precisely, if we denote by E(·) and Eη(·) the evolutions starting
from E0 and E0

η , respectively, we have Eη(t) = E(t)+η eN for all η ∈ R and all
t ≥ 0. Notice that a set F is of the form {(x′,xN)∈RN−1×R : xN ≤ g(x′)} for some
L-Lipschitz function g if and only if dist(Fc,F +η eN)≥ |η |/(1+L2) for all η < 0
and dist(F,Fc +η eN)≥ η/(1+L2) for all η > 0. In particular, by the assumption
on E0, we have that dist((E0)c,E0

η)≥ |η |/(1+L2) for all η < 0. Theorem 3.3 then
yields dist((E(t))c,E(t)+η eN) = dist((E(t))c,Eη(t))≥ |η |/(1+L2) for all η < 0
and t ≥ 0. Analogously, one can show that dist(E(t),(E(t))c+η eN)≥ η/(1+L2)
for all η > 0 and t ≥ 0. Thus, we may conclude that for all t ≥ 0 the set E(t) is the
subgraph of an L-Lipschitz function.

5 Conclusion and perspectives

In this paper we have shown the existence and uniqueness of a mean curva-
ture flow (namely, the “natural” flow by mean curvature along the Cahn-Hoffmann
vector field) with a technique which does not require any type of regularity on
the surface tension, and thus have provided the first sound definition of a crys-
talline curvature flow in any dimension. It does not require that the initial surface
is bounded and applies, in particular, also to the case of graphs. The uniqueness
result is based on a very standard parabolic comparison principle. The general
approach, based on the fact that the level sets of the distance functions have non-
increasing curvatures as the distance increases (as was exploited as early as in [41]
in the viscosity setting), can quite probably be used in more general situations, and
even maybe for motions which are not necessarily variational. However, it should
need substantial adaption. For instance, if replacing the mobility m = φ ◦ in our ap-
proach by other (convex) functions is in principle easy (it is enough to consider, for
the distance functions, the m-distance function instead of the φ ◦-distance), in the
nonsmooth case it yields difficulties which still require further investigation. In-
deed, if m is smooth and φ is not, then it will not be true anymore that the level sets
of the distance function have globally bounded curvature as the distance increases,
so that Definition 2.1 needs to be changed. It is not yet clear what assumption on
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(divz)± is then useful in order to be able to derive both existence and uniqueness.
This is a subject for future study.
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Poincaré Anal. Non Linéaire, 29(5):667–681, 2012.
[2] F. Almgren, J. E. Taylor, and L.-H. Wang. Curvature-driven flows: a variational approach. SIAM

J. Control Optim., 31(2):387–438, 1993.
[3] Fred Almgren and Jean E. Taylor. Flat flow is motion by crystalline curvature for curves with

crystalline energies. J. Differential Geom., 42(1):1–22, 1995.
[4] L. Ambrosio and G. Dal Maso. A general chain rule for distributional derivatives. Proc. Amer.

Math. Soc., 108(3):691–702, 1990.
[5] L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free discontinuity

problems. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press,
New York, 2000.

[6] Luigi Ambrosio and Halil Mete Soner. Level set approach to mean curvature flow in arbitrary
codimension. J. Differential Geom., 43(4):693–737, 1996.

[7] S. Angenent, T. Ilmanen, and D. L. Chopp. A computed example of nonuniqueness of mean
curvature flow in R3. Comm. Partial Differential Equations, 20(11-12):1937–1958, 1995.

[8] Sigurd Angenent and Morton E. Gurtin. Multiphase thermomechanics with interfacial structure.
II. Evolution of an isothermal interface. Arch. Rational Mech. Anal., 108(4):323–391, 1989.

[9] G. Anzellotti. Pairings between measures and bounded functions and compensated compact-
ness. Ann. Mat. Pura Appl. (4), 135:293–318 (1984), 1983.

[10] G. Barles, H. M. Soner, and P. E. Souganidis. Front propagation and phase field theory. SIAM
J. Control Optim., 31(2):439–469, 1993.

[11] G. Bellettini, V. Caselles, and M. Novaga. The total variation flow in RN . J. Differential Equa-
tions, 184(2):475–525, 2002.

[12] G. Bellettini, M. Novaga, and M. Paolini. On a crystalline variational problem. I. First variation
and global L∞ regularity. Arch. Ration. Mech. Anal., 157(3):165–191, 2001.

[13] Giovanni Bellettini, Vicent Caselles, Antonin Chambolle, and Matteo Novaga. Crystalline mean
curvature flow of convex sets. Arch. Ration. Mech. Anal., 179(1):109–152, 2006.

[14] Kenneth A. Brakke. The motion of a surface by its mean curvature, volume 20 of Mathematical
Notes. Princeton University Press, Princeton, N.J., 1978.

[15] Vicent Caselles and Antonin Chambolle. Anisotropic curvature-driven flow of convex sets.
Nonlinear Anal., 65(8):1547–1577, 2006.

[16] A. Chambolle and M. Novaga. Existence and uniqueness for planar anisotropic and crystalline
curvature flow. In L. Ambrosio, Y. Giga, P. Rybka, and Y. Tonegawa, editors, Variational Meth-
ods for Evolving Objects, volume 67 of Advanced Studies in Pure Mathematics, pages 87–113.
Mathematical Society of Japan, 2015.



A CRYSTALLINE MEAN CURVATURE FLOW 25

[17] Antonin Chambolle. An algorithm for mean curvature motion. Interfaces Free Bound.,
6(2):195–218, 2004.

[18] Antonin Chambolle, Massimiliano Morini, and Marcello Ponsiglione. Nonlocal curvature
flows. Arch. Ration. Mech. Anal., 2015.

[19] Antonin Chambolle and Matteo Novaga. Approximation of the anisotropic mean curvature flow.
Math. Models Methods Appl. Sci., 17(6):833–844, 2007.

[20] Yun Gang Chen, Yoshikazu Giga, and Shun’ichi Goto. Uniqueness and existence of viscosity
solutions of generalized mean curvature flow equations. J. Differential Geom., 33(3):749–786,
1991.

[21] Tokuhiro Eto, Yoshikazu Giga, and Katsuyuki Ishii. An area-minimizing scheme for anisotropic
mean-curvature flow. Adv. Differential Equations, 17(11-12):1031–1084, 2012.

[22] Lawrence C. Evans. Convergence of an algorithm for mean curvature motion. Indiana Univ.
Math. J., 42(2):533–557, 1993.

[23] Lawrence C. Evans and Joel Spruck. Motion of level sets by mean curvature. I. J. Differential
Geom., 33(3):635–681, 1991.

[24] Lawrence C. Evans and Joel Spruck. Motion of level sets by mean curvature. II. Trans. Amer.
Math. Soc., 330(1):321–332, 1992.

[25] Irene Fonseca and Stefan Müller. A uniqueness proof for the Wulff theorem. Proc. Roy. Soc.
Edinburgh Sect. A, 119(1-2):125–136, 1991.

[26] Mi-Ho Giga and Yoshikazu Giga. Evolving graphs by singular weighted curvature. Arch. Ra-
tional Mech. Anal., 141(2):117–198, 1998.

[27] Mi-Ho Giga and Yoshikazu Giga. Generalized motion by nonlocal curvature in the plane. Arch.
Ration. Mech. Anal., 159(4):295–333, 2001.

[28] Mi-Ho Giga, Yoshikazu Giga, and Norbert Požár. Periodic total variation flow of non-
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