Let V be a compact and irreducible complex space of complex dimension v whose regular part is endowed with a complete Hermitian metric h. Let π: M→V be a resolution of V. Under suitable assumptions we show that the (v,q) L2 dbar cohomology of the regular part of V is isomorphic to the (v,q) dbar cohomology of M. Then we show that the previous isomorphism applies to the case of Saper-type Kähler metrics, as introduced by Grant Melles and Milman, and to the case of complete Kähler metrics with finite volume and pinched negative sectional curvatures.
On the L2-dbar-cohomology of certain complete Kähler metrics / Bei, Francesco; Piazza, Paolo. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - STAMPA. - (2018), pp. 1-17. [10.1007/s00209-017-2029-2]
On the L2-dbar-cohomology of certain complete Kähler metrics
Bei, FrancescoMembro del Collaboration Group
;Piazza, Paolo
Membro del Collaboration Group
2018
Abstract
Let V be a compact and irreducible complex space of complex dimension v whose regular part is endowed with a complete Hermitian metric h. Let π: M→V be a resolution of V. Under suitable assumptions we show that the (v,q) L2 dbar cohomology of the regular part of V is isomorphic to the (v,q) dbar cohomology of M. Then we show that the previous isomorphism applies to the case of Saper-type Kähler metrics, as introduced by Grant Melles and Milman, and to the case of complete Kähler metrics with finite volume and pinched negative sectional curvatures.File | Dimensione | Formato | |
---|---|---|---|
Bei_On-the-L_2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
479 kB
Formato
Adobe PDF
|
479 kB | Adobe PDF | Contatta l'autore |
Bei_preprint_On-the-L_2018.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
246.6 kB
Formato
Adobe PDF
|
246.6 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.