Let V be a compact and irreducible complex space of complex dimension v whose regular part is endowed with a complete Hermitian metric h. Let π: M→V be a resolution of V. Under suitable assumptions we show that the (v,q) L2 dbar cohomology of the regular part of V is isomorphic to the (v,q) dbar cohomology of M. Then we show that the previous isomorphism applies to the case of Saper-type Kähler metrics, as introduced by Grant Melles and Milman, and to the case of complete Kähler metrics with finite volume and pinched negative sectional curvatures.

On the L2-dbar-cohomology of certain complete Kähler metrics / Bei, Francesco; Piazza, Paolo. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - STAMPA. - (2018), pp. 1-17. [10.1007/s00209-017-2029-2]

On the L2-dbar-cohomology of certain complete Kähler metrics

Bei, Francesco
Membro del Collaboration Group
;
Piazza, Paolo
Membro del Collaboration Group
2018

Abstract

Let V be a compact and irreducible complex space of complex dimension v whose regular part is endowed with a complete Hermitian metric h. Let π: M→V be a resolution of V. Under suitable assumptions we show that the (v,q) L2 dbar cohomology of the regular part of V is isomorphic to the (v,q) dbar cohomology of M. Then we show that the previous isomorphism applies to the case of Saper-type Kähler metrics, as introduced by Grant Melles and Milman, and to the case of complete Kähler metrics with finite volume and pinched negative sectional curvatures.
2018
Saper-type Kähler metrics; complete Kähler metrics with finite volume and pinched negative sectional curvatures; L2-dbar-Dolbeault cohomology; complex spaces; resolution of singularities
01 Pubblicazione su rivista::01a Articolo in rivista
On the L2-dbar-cohomology of certain complete Kähler metrics / Bei, Francesco; Piazza, Paolo. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - STAMPA. - (2018), pp. 1-17. [10.1007/s00209-017-2029-2]
File allegati a questo prodotto
File Dimensione Formato  
Bei_On-the-L_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 479 kB
Formato Adobe PDF
479 kB Adobe PDF   Contatta l'autore
Bei_preprint_On-the-L_2018.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 246.6 kB
Formato Adobe PDF
246.6 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1118639
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact