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ON THE L2-∂-COHOMOLOGY OF CERTAIN COMPLETE KÄHLER METRICS

FRANCESCO BEI AND PAOLO PIAZZA

Abstract. Let V be a compact and irreducible complex space of complex dimension v whose
regular part is endowed with a complete Hermitian metric h. Let π : M → V be a resolution of V .
Under suitable assumptions on h we prove that

H
v,q

2,∂
(reg(V ), h) ∼= H

v,q

∂
(M), q = 0, ..., v.

Then we show that the previous isomorphism applies to the case of Saper-type Kähler metrics, see
[10], and to the case of complete Kähler metrics with finite volume and pinched negative sectional
curvatures.

Keywords: Saper-type Kähler metrics, complete Kähler metrics with finite volume and pinched
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Introduction and main results

Let V be a complex projective variety in CP
m of complex dimension v. Let reg(V ) be its regular

part and let sing(V ) be its singular locus. More generally, let N be a compact Kähler manifold
of complex dimension n with Kähler form ω and let V be an analytic subvariety in N of complex
dimension v. One of the questions raised in [5] concerns the existence of a complete Kähler metric
on reg(V ) whose L2-cohomology is isomorphic to the middle perversity intersection cohomology
of V . This problem has been investigated by Saper in [22] who provided an affirmative answer in
the setting of isolated singularities. Labeling with gS the Kähler metric constructed by Saper, a
problem related to the previous one, is to understand the L2-∂-cohomology of gS . For the case
of (v, q)-forms this latter problem has been addressed again by Saper in the setting of isolated
singularities. He showed in [22] that

(1) H
v,q

2,∂
(reg(V ), gS) ∼= H

v,q

∂
(M)

1
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2 FRANCESCO BEI AND PAOLO PIAZZA

where π : M → V is any resolution of V . An analogous question, but for the L2-∂-cohomology of
the incomplete Kähler metric g on reg(V ) induced by the Kähler metric on N , has been considered
by Pardon [19], Haskell [15], Brüning-Peyerimhoff-Schröder [4] and Pardon-Stern [20] who finally
solved the MacPherson conjecture [17] by showing, more generally, that

H
v,q

2,∂min

(reg(V ), g) ∼= H
v,q

∂
(M).

Subsequently, inspired by the work of Saper [22], Grant Melles and Milman have constructed a
new family of complete Kähler metrics on reg(V ), see [10] and [11], without any assumption on the
singular set of V . The complete Kähler metrics built by Grant Melles and Milman on reg(V ) are
called Saper-type Kähler metrics. The purpose of this paper is to investigate the L2-∂-cohomology
groups of various complete Hermitian metrics that are defined on the regular part of a compact
and irreducible complex space; Saper-type Kähler metrics are examples of such Hermitian metrics.
The paper is structured in the following way. In the first section we provide a general result in the
setting of compact and irreducible complex space whose regular part is endowed with a complete
Hermitian metric. Our theorem reads as follow:

Theorem 1. Let V be a compact and irreducible complex space of complex dimension v. Let
π : M → V be a resolution of V with D := π−1(sing(V )) a normal crossings divisor of M . Let h
be a complete Hermitian metric on reg(V ) and let σ be the complete Hermitian metric on M \D
defined as σ := (π|M\D)

∗h. Assume that:

• π∗Cv,q
D,σ is a fine sheaf for each q = 0, ..., v,

• for each p ∈ sing(V ) there is an open neighborhood U of p and a d-bounded Kähler metric
gU on reg(U) such that h|U and gU are quasi-isometric.

Then we have the following isomorphism for each q = 0, ..., v:

H
v,q

2,∂
(reg(V ), h) ∼= H

v,q

∂
(M).

The sheaves Cv,q
D,σ on M are obtained by sheafification from the presheaves Cv,q

D,σ that assign to

an open set U ⊂ M the maximal domain of ∂v,q,max on (U \ U ∩ D,σ|U\U∩D). For more on this
definition and for the notion of d-bounded Kähler metric appearing in the second condition we refer
the reader to (1.2) and Def. 1.1 respectively. As a consequence of Th. 1 we obtain that

∂v + ∂
∗
v : L2Ωv,•(reg(V ), h) → L2Ωv,•(reg(V ), h)

is a Fredholm operator on its domain endowed with the graph norm, see (1.8). Moreover, under
suitable assumptions, the groups Hv,q

2,∂
(reg(V ), h) are invariant under bimeromorphic maps.

The second section of this paper is devoted to some applications of Th. 1. Our goal here is to
provide some examples of complete Kähler metrics that obey the hypothesis of Th. 1. As a first
application we discuss the case of Saper-type Kähler metrics. Our main result is the following

Theorem 2. Let M be a compact Kähler manifold with Kähler form ω and let V be an analytic

subvariety of M with complex dimension v. Denote now by π : Ṽ → V a resolution of V . Finally
let gS be a Saper-type metric on reg(V ) as in [10]. Then the following isomorphism holds:

(2) H
v,q

2,∂
(reg(V ), gS) ∼= H

v,q

∂
(Ṽ )

for every q = 0, ..., v.

The second example that we present are complete Kähler manifolds with finite volume and
pinched negative sectional curvatures. According to a result of Siu-Yau [23], a complex manifold
that carries a Kähler metric with these properties is biholomorphic to the regular part of a complex
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projective variety with only isolated singularities. In this setting, using our Th. 1, we prove the
following result:

Theorem 3. Let (M,h) be a complete Kähler manifold of complex dimension m with finite volume.
Assume that the sectional curvatures of (M,h) satisfies −b2 ≤ sech ≤ −a2 for some constants

0 < a ≤ b. Let V ⊂ CP
n be the Siu–Yau compactification of M and let π : Ṽ → V be a resolution

of V . Then we have the following isomorphism for each q = 0, ...,m

H
m,q

2,∂
(M,h) ∼= H

m,q

∂
(Ṽ ).

In the second section we also collect various consequences of Th. 2 and Th. 3.
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while the first author was visiting Sapienza Università di Roma whose hospitality and financial sup-
port are gratefully acknowledged. It is a pleasure to thank Pierre Albin for interesting discussions.
We also wish to thank the referee of a first version of this paper for very interesting remarks and
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1. d-bounded Kähler forms and L2-∂-cohomology

We start with the following remarks about our notation. Let (M,h) be a complex Hermitian
manifold. For any (p, q) the maximal extension of ∂p,q, labeled by ∂p,q,max : L2Ωp,q(M,h) →
L2Ωp,q+1(M,h), is the closed extension defined in the distributional sense: ω ∈ D(∂p,q,max) if

ω ∈ L2Ωp,q(M,h) and ∂p,qω, applied in the distributional sense, lies in L2Ωp,q+1(M,g). The

minimal extension of ∂p,q, labeled by ∂p,q,min : L2Ωp,q(M,h) → L2Ωp,q+1(M,h), is defined as the

graph closure of Ωp,q
c (M) in L2Ωp,q(M,h) with respect to graph norm of ∂p,q. It is easy to check that

in both cases we get a complex whose corresponding cohomology is denoted by Hp,q

2,∂,max /min
(M,h).

If (M,h) is complete then it is well known that ∂p,q,min = ∂p,q,min and we label this unique closed

extension simply with ∂p,q : L2Ωp,q(M,h) → L2Ωp,q+1(M,h). Finally analogous notations and

considerations hold for the operator ∂ + ∂
t
. Now we go on with the following definition.

Definition 1.1. Let (M,g) be a Kähler manifold and let ω be the corresponding Kähler form. We
will say that ω is d-bounded if there exists a 1-form η ∈ L∞Ω1(M,g) such that dη = ω where dη is
understood in the distributional sense.

Remark 1.2. The notion of d-bounded Kähler form has been introduced by Gromov in [14]. The
definition that we stated above is slightly more general than the original one because we do not
require η to be a smooth form.

Definition 1.3. Let (M,g) be a Kähler manifold and let ω be the corresponding Kähler form.
We will say that g satisfies the Ohsawa condition if there exists a function f ∈ C∞(M) such that
i
2π∂∂f = ω with ∂f ∈ L∞Ω1,0(M,g). See for example [10].

Remark 1.4. It is clear that if g satisfies the Ohsawa condition then the corresponding Kähler
form ω is d-bounded.

We recall now from [14] the following important result.
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Theorem 1.5. In the setting of definition 1.1. Assume moreover that (M,g) is complete and let
m be the complex dimension of m. Then for any (p, q) with p+ q 6= m we have

H
p,q

2,∂
(M,g) = 0.

Proof. When η is smooth this theorem is Th.1.4.A in [14]. A careful look at the arguments used
there shows that the same proof applies also in our slightly more general setting. Finally we point
out that if g satisfies the Ohsawa condition then the theorem had been already proved in [7] and
[18]. �

Furthermore, concerning d-bounded Kähler metrics, we have also the following basic properties.

Proposition 1.6. Let f : M → N be an holomorphic immersion between complex manifolds. Let
g be a d-bounded Kähler metric on N . Then f∗g is a d-bounded Kähler metric on M .

Proof. Let ω be the Kähler form of g and let h := f∗g. It is easy to check that in general
the pullback through a smooth map commutes with the distributional action of the de Rham
differential. Therefore the above statement follows immediately noticing that if η ∈ L∞Ω1(N, g)
with dη = ω then d(f∗η) = f∗ω and |f∗η|h ≤ |ω|g where | |h and | |g denote respectively the
pointwise norm on T ∗M ⊗ C induced by h and g. �

Proposition 1.7. Let M be a complex manifold and let g and h be two d-bounded Kähler metrics
on M . Then the Kähler metric ρ := g + h is d-bounded as well.

In order to prove the above proposition we need the following elementary result.

Proposition 1.8. Let M be a manifold and let g1 and g2 be two Riemannian metrics on M such
that g2 ≤ g1. Let g∗1 be the metric that g1 induces on T ∗M and analogously let g∗2 be the metric
that g2 induces on T ∗M . Then we have g∗1 ≤ g∗2.

Proof. Let A ∈ End(TM) such that g2(·, ·) = g1(A·, ·). Then, for each p ∈ M , Ap : TpM → TpM

is positive, symmetric with respect to g1 and its eigenvalues are bounded above by 1. Let A−1 be
the inverse of A and let (A−1)t ∈ End(T ∗M) be the transposed endomorphism of A−1. An easy
calculation of linear algebra shows that g∗2(·, ·) = g∗1((A

−1)t·, ·). Now, for each p ∈ M , (A−1)tp :
T ∗
pM → T ∗

pM is positive, symmetric with respect to g∗1 and its eigenvalues are bounded below by
1. This in turn implies immediately that g∗1 ≤ g∗2 as required. �

Now we give a proof of Prop. 1.7

Proof. Let ω be the Kähler form of g and analogously let τ be the Kähler form of h. According
to the assumptions there exist 1-forms α ∈ L∞Ω1(M,g), β ∈ L∞Ω1(M,h) such that dα = ω and
dβ = τ . Let us label by ρ∗, g∗ and h∗ the metrics on T ∗M ⊗C induced respectively by ρ, g and h.
Clearly g ≤ ρ and h ≤ ρ. Then, using Prop. 1.8, we have

(ρ∗(α+ β, α+ β))
1

2 ≤ (ρ∗(α,α))
1

2 + (ρ∗(β, β))
1

2 ≤ (g∗(α,α))
1

2 + (h∗(β, β))
1

2

Since α ∈ L∞Ω1(M,g) and β ∈ L∞Ω1(M,h) we can conclude that α + β ∈ L∞Ω1(M,ρ) as
desired. �

We go on by spending a few words about resolution of singularities. We recall only what is
strictly necessary for our purposes and we refer to the seminal work [16] and also to [2] for in-depth
treatments of this topic. For a throughout discussion about complex spaces we refer to the mono-
graphs [8] and [12].
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Consider a compact and irreducible complex space V . Then, thanks to the fundamental work of
Hironaka, we know that the singularities of V can be resolved. More precisely there exists a compact
complex manifold M , a divisor with only normal crossings D ⊂ M , a surjective and holomorphic
map π : M → V such that π−1(sing(V )) = D and π|M\D : M \D → reg(V ) is a biholomorphism.
Moreover if V ⊂ N is an analytic subvariety of a compact complex manifold then there exists a
compact complex manifold M , a compact complex submanifold Z ⊂ M , a surjective holomorphic
map π : M → N and a divisor with only normal crossings D ⊂ M such that π−1(sing(V )) = D,
π|M\D : M \D → N \ sing(V ) is a biholomorphism and π|Z\(Z∩D) : Z \ (Z ∩D) → V \ sing(V ) is
a biholomorphism. The latter is the so-called embedded desingularization.
We introduce now some presheaves and the corresponding sheaves arising by sheafification. Let M
be a compact complex manifold, D ⊂M a divisor with only normal crossings and g any Hermitian
metric on M \D. Consider the preasheaves Cp,q

D,g on M given by the assignments

(1.1) C
p,q
D,g(U) := {D(∂p,q,max) on (U \ U ∩D, g|U\U∩D)};

in other words to every open subset U of M we assign the maximal domain of ∂p,q over U \ (U ∩D)
with respect to the Hermitian metric g|U\U∩D. The sheafification of Cp,q

D,g is denoted by Cp,q
D,g and

its sections over an open subset U ⊂M are

(1.2) Cp,q
D,g(U) := {s ∈ L2

locΩ
p,q(U \ U ∩D, g|U\U∩D) such that for each p ∈ U there exists an

open neighborhoodW with p ∈W ⊂ U such that s|W\W∩D ∈ D(∂p,q,max) on (W\W∩D, g|W\W∩D)}.
We have now all the ingredients to state the main result of this section.

Theorem 1.9. Let V be a compact and irreducible complex space of complex dimension v. Let
π : M → V be a resolution of V with D := π−1(sing(V )) a normal crossings divisor in M . Let h
be a complete Hermitian metric on reg(V ) and let σ be the complete Hermitian metric on M \D
defined as σ := (π|M\D)

∗h. Assume that:

• π∗Cv,q
D,σ is a fine sheaf for each q = 0, ..., v,

• for each p ∈ sing(V ) there is an open neighborhood U and a d-bounded Kähler metric gU
on reg(U) such that h|U and gU are quasi-isometric.

Then we have the following isomorphism for each q = 0, ..., v:

H
v,q

2,∂
(reg(V ), h) ∼= H

v,q

∂
(M).

Before tackling the proof we recall the following properties.

Proposition 1.10. LetM be a complex manifold of complex dimension m, let (E, ρ) be a Hermitian
vector bundle on M and let g and h be two Hermitian metrics on M . Then we have an equality of
Hilbert spaces

L2Ωm,0(M,E, g) = L2Ωm,0(M,E, h).

Assume now that cg ≥ h for some c > 0. Then for each q = 1, ...,m there exists a constant ξq > 0
such that for every s ∈ Ωm,q

c (M,E) we have

(1.3) ‖s‖2L2Ωm,q(M,E,g) ≤ ξq‖s‖2L2Ωm,q(M,E,h).

Therefore the identity Ωm,q
c (M,E) → Ωm,q

c (M,E) induces a continuous inclusion

L2Ωm,q(M,E, h) →֒ L2Ωm,q(M,E, g)

for each q = 1, ...,m.

Proof. The statement follows by the computations carried out in [11] pag. 145. �



6 FRANCESCO BEI AND PAOLO PIAZZA

We are now in the position to prove Th. 1.9.

Proof. Let π : M → V be a resolution of V . Let KM be the canonical sheaf of M , that is,
the sheaf whose sections over any open subset U of M are the holomorphic (n, 0)-forms over U .
Let us consider the following sheaf KV := π∗KM . This is the so-called Grauert-Riemenschneider
canonical sheaf introduced in [13]. By the Takegoshi vanishing theorem, see [24], we get that
Hq(M,KM ) ∼= Hq(V,KV ) for each q = 0, ..., v, see for instance [21] for the details. We are therefore
left with the task of showing that Hq(V,KV ) ∼= H

n,q

2,∂
(reg(V ), h) for each q = 0, ..., n. To this end

consider the complex of sheaves {π∗Cv,q
D,σ, q ≥ 0}, see (1.2), whose morphisms are those induced by

the distributional action of ∂v,q. It is clear that the cohomology groups of the complex given by
the global sections of {π∗Cv,q

D,σ, q ≥ 0}, that is

(1.4) 0 → π∗Cn,0
D,σ(V ) → ...→ π∗Cn,q

D,σ(V ) → ...→ π∗Cn,n
D,σ(V ) → 0

are Hn,q

2,∂
(reg(V ), h), q = 0, ..., n. Therefore our goal is to show that the complex {π∗Cv,q

D,σ, q ≥ 0} is

a fine resolution of KV . Since we assumed that π∗Cv,q
D,σ is a fine sheaf for each q = 0, ..., v we have

only to prove that {π∗Cv,q
D,σ, q ≥ 0} is a resolution of KV . We start to tackle this problem by showing

that {π∗Cv,q
D,σ, q ≥ 0} is an exact sequence of sheaves. Let p be any point in V . It is clear that if

p ∈ reg(V ) then the induced sequence at the level of stalks, {(π∗Cv,q
D,σ)p, q ≥ 0}, is exact. Hence we

can assume that p ∈ sing(V ). As a first step in order to show that {(π∗Cv,q
D,σ)p, q ≥ 0} is exact for

any p ∈ sing(V ) we need to introduce an auxiliary complete Kähler metric on a neighborhood of p
that satisfies the assumptions of Th. 1.5. This is done as follows.
According to the assumptions we know that there exists a sufficiently small open neighbourhood
U of p such that the restriction of h to the regular part of U is quasi-isometric to a Kähler metric
gU which is d-bounded. Now, taking U even smaller if necessary, we can assume that there exists
a positive constant c, an integer n > v and a proper holomorphic embedding φ : U −→ B(0, c)
where B(0, c) is the ball in C

n centered in 0 with radius c. Let ψ : B(0, c) → R be defined as
ψ := −(log(c2 − |z|2)) and let g be the Kähler metric on B(0, c) whose Kähler form is given by√
−1∂∂ψ. It is easy to check that g satisfies the Ohsawa condition and therefore in particular is d-

bounded, see for instance [20] pag. 613. This in turn implies that ρU := (φ|reg(U))
∗g is a d-bounded

Kähler metric on U , see Prop. 1.6. Now we introduce the following Kähler metric on reg(U):

(1.5) γU := ρU + gU

Next we check that γU satisfies the hypothesis of Th. 1.5. We begin by proving that γU
is complete. According to Gordon’s Theorem, [9] Theorem 2, this is equivalent to showing the
existence of a positive, smooth and proper function f : reg(U) → R with bounded gradient. Let
b : B(0, c) → R be a smooth function which satisfies the condition of Gordon’s Thereom with
respect to the complete Kähler metric associated to the (1, 1)-form

√
−1∂∂ψ. Let βU : reg(U) → R

be defined as (b◦φ)|reg(U). Let τ : reg(V ) → R be a smooth function which satisfies the condition of
Gordon’s Theorem with respect to the metric h. Let us label by τU the restriction of τ to reg(U).
We claim that βU + τU is smooth, proper and with bounded gradient with respect to γU . We
first show that βU + τU has bounded gradient with respect to γU . Labeling by γ∗U , g

∗
U and ρ∗U the

metrics induced respectively by γU , gU and ρU on T ∗reg(U), our task is equivalent to showing that
βU + τU has bounded differential with respect to γ∗U . By Prop. 1.8 we have |dτU |γ∗

U
≤ |dτU |g∗

U
and

|dβU |γ∗

U
≤ |dβU |ρ∗

U
. Therefore we have:

|dτU + dβU |γ∗

U
≤ |dτU |γ∗

U
+ |dβU |γ∗

U
≤ |dτU |g∗

U
+ |dβU |ρ∗

U
.
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Finally |dτU |g∗
U

is bounded because |dτ |h∗ is bounded and gU and h|reg(U) are quasi-isometric on

reg(U). Analogously |dβU |ρ∗
U

is bounded because βU = (b ◦ φ)|reg(U), b satisfy the conditions of

Gordon’s Theorem with respect to g and ρU = (φ|reg(U))
∗g. Clearly βU + τU is smooth. It remains

to show that it is proper. However, this is clear because it is easy to see, from the very definition of
βU and τU , that if {pj} is a sequence of points in reg(U) converging to a point p in regU \ reg(U),
then (βU + τU )(pj) → +∞ as j → +∞. Furthermore, according to Prop. 1.7, we know that γU
is a d-bounded Kähler metric because it is defined as the sum of two d-bounded Kähler metrics.
Hence, by Th. 1.5, we can conclude that

H
v,q

2,∂
(reg(U), γU ) = 0

for q > 0. Now, equipped with the above vanishing result, we can come back to the complex of
sheaves {π∗Cv,q

D,σ, q ≥ 0}. Let p ∈ sing(V ). In order to conclude that the complex {(π∗Cv,q
D,σ)p, q ≥ 0}

is exact, it is enough to show that given any open neighborhood A of p every cohomology class
in H

v,q

2,∂max

(reg(A), h|reg(A)) admits a representative that becomes exact when restricted to some

open subset W ⊂ A with p ∈ W . This is done as follows. Consider again any point p ∈ sing(V )
and any open neighborhood A of p. Let [ν] ∈ H

v,q

2,∂max

(reg(A), h|reg(A)). According to [3] Th.

3.5 we know that [ν] admits a smooth representative that we label by ν. Let U ⊂ A be an
open neighborhood of p such that h|reg(U) is quasi isometric to a d-bounded Kähler metric gU .
Clearly we have h|reg(U) ≤ γU , where γU is defined as in (1.5). Hence by Prop. 1.10 we get that

ν|reg(U) ∈ ker(∂v,q) ⊂ L2Ωv,q(reg(U), γU ). Thus, according to what we have just shown above, there

exists µ ∈ D(∂v,q−1) ⊂ L2Ωv,q−1(reg(U), γU ) such that ∂v,q−1µ = ν|reg(U) in L2Ωv,q(reg(U), γU ).

Let now W be any open subset of U such that W ⊂ U and p ∈ W . It immediate to check
that γU |reg(W ) and h|reg(W ) are quasi-isometric. Therefore we have µ|reg(W ) ∈ D(∂v,q−1,max) ⊂
L2Ωv,q−1(reg(W ), h|reg(W )) and ∂v,q−1,max(µ|reg(W )) = ν|reg(W ) in L2Ωv,q(reg(W ), h|reg(W )) and so

we can conclude that {π∗Cv,q
D,σ, q ≥ 0} is an exact sequence of sheaves as required.

Finally we finish the proof of Th. 1.9 by showing that π∗KM is equal to the kernel of the morphism
π∗Cv,0

D,σ → π∗Cv,1
D,σ induced by ∂v,0. To this aim we work on M and indeed we show that KM is equal

to the kernel of the morphism Cv,0
D,σ → Cv,1

D,σ induced by ∂v,0. Consider any open subset U of M and

let p be any point in U . Let α ∈ Cv,0
D,σ(U) be such that α ∈ ker(Cv,0

D,σ → Cv,1
D,σ). Hence, there exists

an open neighbourhoodW of p, with closure contained in U , such that α restricted toW \(W ∩D),
α|W\(W∩D), lies in L

2Ωv,0(W \ (W ∩D), σ|W\(W∩D)) and satisfies

(1.6) ∂v,0,max α|W\(W∩D) = 0 .

Thus in turn implies that

(1.7) (∂v,0,max)
∗(∂v,0,maxα|W\(W∩D)) = 0.

Consider now the complex {Ωv,∗
c (W \ (W ∩ D)), ∂v,∗}; it is well known that this is an elliptic

complex and thus the associated laplacians ∆∂,v,q are elliptic for each q. By (1.7) we know in

particular that α|W\(W∩D) is in the null space of the maximal extension of ∆∂,v,0 : L2Ωv,0(W \
(W ∩ D), σ|W\(W∩D)) → L2Ωv,0(W \ (W ∩ D), σ|W\(W∩D)). Hence by elliptic regularity we can
conclude that α|W\(W∩D) is smooth, and thus, by (1.6), holomorphic onW \(W ∩D). Summarizing:

ω lies in L2Ωv,0(W \(W ∩D), σ|W\(W∩D)) and it is holomorphic onW \(W ∩D). Now, ifW ∩D = ∅
we can already conclude that ω is homolorphic in all of W . If W ∩ D 6= ∅ let λ be an arbitrary
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Hermitian metric on M and let us consider λ|W\(W∩D). According to Prop. 1.10 we know that

L2Ωv,0(W \ (W ∩D), σ|W\(W∩D)) = L2Ωv,0(W \ (W ∩D), λ|W\(W∩D)) .

Thus α is in L2Ωv,0(W \ (W ∩D), λ|W\(W∩D)) and it is holomorphic on W \ (W ∩D). Finally using

an L2-extension theorem as in [21] we can conclude that α extends as an holomorphic (v, 0)-form in
all of W . Replacing p with any other point in U and repeating the same argument we can conclude
that α is holomorphic in U and, therefore, that it is an element of KM (U). Clearly the other

inclusion is trivial, that is: KM is a sub-sheaf of the kernel of the morphism Cv,0
D,σ → Cn,1

D,σ which

is induced by the distributional action of ∂v,0. Indeed if ω ∈ KM (U) then ω ∈ Cv,0
D,σ(U) and the

distributional action of ∂v,0 applied to ω is equal to 0. We can thus conclude that {π∗Cv,q
D,σ, q ≥ 0}

is a fine resolution of π∗KM as desired. �

We give now a criterion which assures that the sheaves {π∗Cv,q
D,σ, q ≥ 0} are fine.

Lemma 1.11. In the setting of Th. 1.9. Assume that given any open cover U = {Ui}i∈I of V
there exists a continuous partition of unity {λj}j∈J subordinate to U such that for each j ∈ J

(1) λj|reg(V ) is smooth
(2) ‖d(λj |reg(V ))‖L∞Ω1(reg(V ),h) <∞.

Then π∗Cv,q
D,σ is a fine sheaf for each q = 0, ..., v.

Proof. This follows immediately from the description given in (1.2). �

We proceed by showing some corollaries of Th. 1.9.

Corollary 1.12. The unique closed extension of the operator ∂v+∂
t
v : Ωv,•

c (reg(V ), h) → Ωv,•
c (reg(V ), h),

denoted here

(1.8) ∂v + ∂
∗
v : L2Ωv,•(reg(V ), h) → L2Ωv,•(reg(V ), h)

is a Fredholm operator on its domain endowed with the graph norm.

Proof. This follows immediately from the finite dimensionality of Hv,q

2,∂
(reg(V ), h) and Theorem 2.4

in [3]. �

Corollary 1.13. For each q = 0, ..., v we have the following isomorphism:

H
0,q

2,∂
(reg(V ), h) ∼= H

0,q

∂
(M).

In particular we have
χ(M,OM ) = χ2(reg(V ), h)

where the term on the right-hand side is defined as
∑

(−1)q dim(H0,q

2,∂
(reg(V ), h)).

Proof. This follows from Th. 1.9 and the L2 version of Serre duality, see [21], which tells us that

H
v,q

2,∂
(reg(V ), h) ∼= H

0,q

2,∂
(reg(V ), h). �

Corollary 1.14. The unique closed extension of the operator ∂0+∂
t
0 : Ω

0,•
c (reg(V ), h) → Ω0,•

c (reg(V ), h),
denoted here

∂0 + ∂
∗
0 : L

2Ω0,•(reg(V ), h) → L2Ω0,•(reg(V ), h)

is a Fredholm operator on its domain endowed with the graph norm.

Proof. As for Cor. 1.12 this follows immediately by the finite dimensionality of H0,q

2,∂
(reg(V ), h) and

Theorem 2.4 in [3]. �
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Corollary 1.15. In the setting of Th. 1.9. Assume moreover that h is Kähler. Then Hq,0

2,∂
(reg(V ), h)

is finite dimensional for each q = 0, ..., v. Moreover

∂q,0 : L
2Ωq,0(reg(V ), h) → L2Ωq,0(reg(V ), h)

that is the unique closed extension of ∂q,0 : Ω
q,0
c (reg(V )) → Ωq,1

c (reg(V )), has closed range.

Proof. We consider ∆v,q,∂ : Ωv,q
c (reg(V )) → Ωv,q

c (reg(V )), with ∆v,q,∂ := ∂
t
v,q∂v,q + ∂v,q∂

t
v,q. Ac-

cording to Th. 2.4 in [3] we know that the unique closed extension of this operator, labeled here
by

(1.9) ∆v,q,∂ : L2Ωv,q(reg(V ), h) → L2Ωv,q(reg(V ), h),

is a Fredholm operator on its domain endowed with the graph norm. Consider now

(1.10) ∆v−q,0,∂ : L2Ωv−q,0(reg(V ), h) → L2Ωv−q,0(reg(V ), h)

that is, the operator defined as the unique closed extension of ∆v−q,0,∂ on Ωv−q,0
c (reg(V )). It

is easy to see that the Hodge star operator ∗ : L2Ωv,q(reg(V ), h) → L2Ωv−q,0(reg(V ), h) makes
(1.9) and (1.10) unitarily equivalent. On the other hand since (reg(V ), h) is Kähler we have
∆v−q,0,∂ = ∆v−q,0,∂ on Ωv−q,0(reg(V )). This in turn implies that we have an equality of opera-

tors acting on L2Ωv−q,0(reg(V ), h) that is ∆v−q,0,∂ : L2Ωv−q,0(reg(V ), h) → L2Ωv−q,0(reg(V ), h)
coincides with ∆v−q,0,∂ : L2Ωv−q,0(reg(V ), h) → L2Ωv−q,0(reg(V ), h). Hence we can conclude

that ∆v−q,0,∂ : L2Ωv−q,0(reg(V ), h) → L2Ωv−q,0(reg(V ), h) is a Fredholm operator on its do-

main endowed with the graph norm. Moreover the completness of (reg(V ), h) assures us that
∆v−q,0,∂ : L2Ωv−q,0(reg(V ), h) → L2Ωv−q,0(reg(V ), h) coincides with

∂
∗
v−q,0 ◦ ∂v−q,0 : L

2Ωv−q,0(reg(V ), h) → L2Ωv−q,1(reg(V ), h)

where ∂v−q,0 : L
2Ωv−q,0(reg(V ), h) → L2Ωv−q,1(reg(V ), h) is the unique closed extension of ∂v−q,0 :

Ωv−q,0
c (reg(V )) → Ωv−q,1

c (reg(V )) and ∂
∗
v−q,0 : L2Ωv−q,1(reg(V ), h) → L2Ωv−q,0(reg(V ), h) is its

Hilbert space adjoint. In conclusion this shows that on L2Ωv−q,0(reg(V ), h) we have

ker(∆v−q,0,∂) = ker(∂v−q,0) = H
v−q,0

2,∂
(reg(V ), h).

We can thus conclude that Hv−q,0

2,∂
(reg(V ), h) is finite dimensional. Finally that

∂v−q,0 : L
2Ωv−q,0(reg(V ), h) → L2Ωv−q,1(reg(V ), h)

has closed range can be easily shown using the fact that ∆v−q,0,∂ : L2Ωv−q,0(reg(V ), h) → L2Ωv−q,0(reg(V ), h)

is a Fredholm operator on its domain endowed with the graph norm arguing for instance as in [1]
Cor. 4.1. �

We end this section with the following consequence.

Corollary 1.16. Let V and W be a pair of compact and irreducible complex spaces of complex
dimension v whose regular parts are endowed with complete Hermitian metrics h and g respectively.
Assume that both (V, h) and (W, g) satisfy the assumptions of Th. 1.9. Assume moreover that V
and W are bimeromorphic. Then for each q = 0, ..., v,

H
v,q

2,∂
(reg(V, h)) ∼= H

v,q

2,∂
(reg(W, g)) H

0,q

2,∂
(reg(V, h)) ∼= H

0,q

2,∂
(reg(W, g)).

Proof. Let π : M → V be a resolution of V and analogously let p : N → W be a resolution of
W . Since we assumed that V and W are bimeromorphic we have Hv,q

∂
(M) ∼= H

v,q

∂
(N) for each

q = 0, ..., v. Now the conclusion follows by Th. 1.9 and Cor. 1.13. �
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2. Applications

The aim of this section is to collect some examples of Hermitian complex spaces where Th. 1.9
and its corollaries can be applied. In the first part we treat Saper-type Kähler metrics while in
last part we consider complete Kähler manifolds with finite volume and pinched negative sectional
curvatures.

2.1. Saper metrics. These kind of metrics have been defined in [10] and [11] in order to extend
to the case of arbitrary analytic subvarieties of Kähler manifolds the construction carried out by
Saper in [22] in the setting of isolated singularities.
In the next definition we recall from [10] pag. 741 the definition of Saper-type metric.

Definition 2.1. Let V be a singular subvariety of a compact complex manifold M and let ω be the

fundamental (1, 1)-form of a Hermitian metric on M . Let π : M̃ → M be a holomorphic map of

a compact complex manifold M̃ to M whose exceptional set E is a divisor with normal crossing in

M̃ and such that the restriction

π|
M̃\E

: M̃ \ E −→M \ sing(V )

is a biholomorphism. Let LE be the line bundle on M̃ associated to E and let h be a Hermitian

metric on LE. Let s : M̃ → LE be a global holomorphic section whose associated divisor (s) equals
E (in particular s vanishes exactly on E) and let ‖s‖h be the norm of s with respect to h.

A metric on M̃ \ E which is quasi-isometric to a metric with fundamental (1, 1)-form

lπ∗ω −
√
−1

2π
∂∂ log(log ‖s‖2h)2

for l a positive integer, will be called a Saper-type metric, distinguished with respect to the map

π. The corresponding metric on M \ sing V ∼= M̃ \E and its restriction to V \ sing V are also called
Saper-type metric.

We follow the convention used in [10]: thus, when it is clear form the context, we omit the
sentence ”distinguished with respect to π”.

Now we go on stating a fundamental existence result for Saper-type metrics proved by Grant
Melles and Milman in [10], Theorem 8.6 pag. 746.

Theorem 2.2. Let V be a singular subvariety of a compact Kähler manifold M and let ω be the
Kähler (1, 1)-form of a Kähler metric on M . There exists a C∞ function F on M , vanishing on
sing(V ), such that the (1, 1)-form

(2.1) ωS = ω −
√
−1

2π
∂∂ log(log F )2

is the Kähler form of a complete Saper-type metric on M \ sing(V ) and hence on V \ sing(V ).
Furthermore the function F can be constructed to be of the form

F =
∏

α

F ρα
α

where {ρα} is a C∞ partition of unity subordinate to an open cover {Uα} of M , Fα is a function
on Uα of the form

Fα =

r∑

j=1

|fj |2
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and f1, ..., fr are holomorphic functions on Uα, vanishing exactly on Uα∩sing(V ). More specifically
f1, ..., fr are local holomorphic generators of a coherent ideal sheaf I on M such that blowing up M

along I desingularizes V , I is supported on sing(V ) and the exceptional divisor in the blow-up M̃

along I has normal crossing and has also normal crossing with the strict transform Ṽ of V in M̃
(the so called embedded desingularization of X.)

Concerning Saper-type metric we have the following property.

Proposition 2.3. In the setting of Th. 2.2. For each p ∈ sing(V ) there exists an open neighborhood
U and a Kähler metric gU such that gS |U is quasi-isometric to gU and gU satisfies the Ohsawa
condition.

Proof. This follows from [10] Prop. 8.10 and Prop. 9.11. �

We have now all the ingredients to apply Th. 1.9 to Saper-type Kähler metrics.

Theorem 2.4. Let M be a compact Kähler manifold with Kähler form ω and let V be an analytic

subvariety in M of complex dimension v. Let π : Ṽ → V be a resolution of V . Finally let gS be a
Saper-type metric on reg(V ) as constructed in Th. 2.2. Then the following isomorphism holds:

(2.2) H
v,q

2,∂
(reg(V ), gS) ∼= H

v,q

∂
(Ṽ )

for every q = v, ..., n.

Proof. Let D ⊂ Ṽ be the divisor with only normal crossing such that π−1(sing(V )) = D. Let
σS := (π|Ṽ \D)

∗gS . Thanks to Prop. 2.3, in order to deduce the above theorem by Th. 1.9, we

have only to check that the sheaves {π∗Cv,q
D,σS

, q ≥ 0} are fine. This is done as follows. In order to

prove that π∗Cv,q
D,σS

is fine it is enough to show that given a cover U = {Ui}i∈I of V there exists a

continuous partition of unity {fγ}γ∈G subordinated to U such that for each γ ∈ G

• fγ |reg(V ) is smooth

• If A is an open subset of V and ω ∈ π∗Cv,q
D,gS

(A) then fγω ∈ π∗Cv,q
D,gS

(A).

To this end we recall [11, Proposition 10.2.1]:

Proposition 2.5. Let p ∈ sing(V ), let U be an open neighborhood of p in V , let f be a smooth func-
tion on M and let ω ∈ L2Ωk(reg(U), gS |reg(U)). Then d(f |reg(U)) ∧ ω ∈ L2Ωk+1(reg(U), gS |reg(U)).

Clearly d(f |reg(U)) ∧ ω = ∂(f |reg(U)) ∧ ω + ∂(f |reg(U)) ∧ ω. Therefore, thanks to Prop. 2.5, if ω ∈
L2Ωp,q(reg(U), gS |reg(U)), p+q = k, we can conclude that ∂(f |reg(U))∧ω ∈ L2Ωp,q+1(reg(U), gS |reg(U)).

In particular if ω ∈ π∗Cv,q
D,gS

(U) then we can conclude that f |reg(U)ω ∈ π∗Cv,q
D,gS

(U). Let now

V = {Vj}j∈J be an open cover of M such that the induced cover on V is equal to U . Considering a
smooth partition of unity subordinated to V and restricting it to V and using the remark that we
have just made, it is clear that we have built a partition of unity on V subordinated to U with the
required properties. �

Remark 2.6. In the particular case of isolated singularities the isomorphism above was established
by Saper as a corollary of his main result in [22], namely the isomorphism of Hℓ

2(reg(V ), gS) ∼=
ImHℓ(V,R), and the identification of the induced Hodge structure on ImHℓ(V,R) with the one
constructed by Saito. Our proof, on the other hand, is direct and rests solely on analytic arguments.

We conclude this subsection with the following corollaries.

Corollary 2.7. In the setting of Th. 2.4. Then Cor. 1.12–Cor. 1.15 hold for (reg(V ), gS).
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Corollary 2.8. Let (M,h) and (N, g) be compact Kähler manifolds and let V ⊂ M , W ⊂ N be
analytic subvarieties of complex dimension v. Assume that V and W are bimeromorphic. Then for
each q = 0, ..., v

H
v,q

2,∂
(reg(V ), hS) ∼= H

v,q

2,∂
(reg(W ), gS) H

0,q

2,∂
(reg(V ), hS) ∼= H

0,q

2,∂
(reg(W ), gS)

where hS and gS are Saper-type metrics as constructed in Th. 2.2 on V and W respectively.

Proof. This follows from Cor. 1.16. �

2.2. Further remarks on Saper metrics. In this subsection we collect some byproducts of Th.
1.9 in the framework of Saper-type metrics. Consider again the setting of Theorem 2.4. To avoid
any confusion with the notations let us now label by ω′

S the (1, 1)-form on M \ sing(V ) given by

ω′
S = ω −

√
−1

2π
∂∂ log(log F )2

where ω is the fundamental form of a Kähler metric on M and F is defined in (2.1). Let g′S be the
Saper-type metric onM \sing(V ) whose fundamental form is ω′

S. If we label by i : reg(V ) →M the
inclusion of reg(V ) in M , then we have gS = i∗(g′S) where gS is the Saper-type metric considered
in Theorem 2.4. We have the following

Theorem 2.9. In the setting described above. We have the following isomorphisms:

(2.3) H
m,q

2,∂
(M \ sing(V ), g′S)

∼= H
m,q

∂
(M)

(2.4) H
0,q

2,∂
(M \ sing(V ), g′S)

∼= H
0,q

∂
(M)

where m is the complex dimension of M .

Proof. The proof is similar to the one given for Th. 2.4 and for the sake of brevity we omit the
details. Let us label by Vs the singular locus of V . Consider on M the preasheaf Cp,q

Vs,g′S
defined

by Cp,q
Vs,g′S

(U) := {D(∂p,q,max) on (U \ U ∩ Vs, g′S |U\U∩Vs
)} where U is any open subset of M . The

sheafification of Cp,q
Vs,g′S

is denoted by Cp,q
Vs,g′S

. Analogously to the proof of Theorem 1.9 we want to

show that the complex {Cm,q
Vs,g′S

, q ≥ 0}, whose morphisms are induced by the distributional action

of ∂m,q, is a fine resolution of KM . In particular that Cp,q
Vs,g′S

is fine for each p, q follows using a

partition of unity of M . Now let p ∈ Vs and let W be a sufficiently small neighborhood of p. We
can assume that there exists a positive constant c, an and a biholomorphism φ : W −→ B(0, c)
where B(0, c) is the ball in C

m centered in 0 with radius c. Let ψ : B(0, c) → R be defined as
ψ := −(log(c2−|z|2)), let g be the Kähler metric on B(0, c) whose Kähler form is given by

√
−1∂∂ψ

and let ρW := (φ|reg(W\(W∩Vs)))
∗g. By [10] Prop. 8.10 and 9.11 we know that gS′ |W\(W∩Vs) is quasi

isometric to a Kähler metric gW which satisfies the Ohsawa condition. Now we introduce the
following Kähler metric on W \ (W ∩ Vs):
(2.5) γW := ρW + gW

Using γW and arguing as in the proof of Th. 1.9 we can conclude that {Cm,q
Vs,g′S

, q ≥ 0} is an exact

sequence of sheaves. Finally we are left to show that the kernel of the sheaves morphism Cm,0
Vs,g′S

∂m,0→
Cm,1
Vs,g′S

is KM . This can be seen again as in the proof of Th. 1.9. In conclusion {Cm,q
Vs,g′S

, q ≥ 0} is a

fine resolution of KM and thus we can conclude that Hm,q

2,∂
(M \ sing(V ), g′S)

∼= H
m,q

∂
(M). Applying

L2-Serre duality we finally get H0,q

2,∂
(M \ sing(V ), g′S)

∼= H
0,q

∂
(M) and this completes the proof. �
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Next we consider a Hermitian holomorphic line bundle L on the resolution Ṽ . We can restrict L

to Ṽ \D and push it forward to π∗L on V \ sing(V ) through the biholomorphism π|Ṽ \D : Ṽ \D →
V \ sing(V ) (where π : Ṽ → V is the map appearing in the resolution of V ):

π∗L := (π|Ṽ \D)
−1)∗L|Ṽ \D .

We shall say that L is semipositive with respect to the base V if for each p ∈ V there exists a
neighbourhood Up in V such that L is positive on π−1(Up).

Theorem 2.10. Consider the setting of Theorem 2.4. Let L → Ṽ be a Hermitian holomorphic
line bundle which is semipositive with respect to V . Then there exist isomorphisms:

(2.6) H
v,q

2,∂
(V \ sing(V ), π∗L, gS) ∼= H

v,q

∂
(Ṽ , L) H

0,q

2,∂
(V \ sing(V ), π∗L

∗, gS) ∼= H
0,q

∂
(Ṽ , L∗) .

Proof. Also in this case the proof is similar to the one given for Theorem 2.4 but with some
modifications due to the presence of the line bundle L. These modifications are as follows: first

of all we can introduce with self-explanatory notation the complex of sheaves {Cv,q
D,gS ,L

} on Ṽ . As

showed in [21] we have Hq(Ṽ ,K
Ṽ
(L)) = Hq(V, π∗KṼ

(L)) where K
Ṽ
(L) is the sheaf of holomorphic

sections of the holomorphic line bundle K
Ṽ
⊗L. Hence, as in the proof of Th. 2.4, our purpose now

is to show that {π∗Cv,q
D,gS,L

} is a fine resolution of π∗(KṼ (L)). To this aim, using a results proved by

Ruppental, see [21, Theorem 3.2], we know that for Kähler metrics satisfying the Ohsawa condition
we can extend Th. 1.5 to the L2-∂-cohomology of forms with bi-degree (v, q) and with coefficients
in any semipositive Hermitian holomorphic line bundle. Clearly since L is semipositive with respect
to V it obeys the conditions of Th. 3.2 in [21]. Therefore, with an analogous strategy to the one
used in the proof of Theorem 1.9, this vanishing result can in turn be used in order to show that
{π∗Cv,q

D,gS,L
} is a fine resolution of π∗(KṼ ⊗L). All this gives us the first isomorphism in (2.6); using

the L2-version of Serre duality we get the second isomorphism. �

For the next result we begin by recalling that a Hermitian holomorphic line bundle L over an
irreducible compact complex space V is almost positive if the curvature form is semipositive on
reg(V ) and positive on an open subset of reg(V ).

Theorem 2.11. Let π : Ṽ → V be as in Th. 2.4. Let L be an almost positive Hermitian
holomorphic line bundle over V . Then for q > 0 we have

(2.7) H
v,q

2,∂
(V \ sing(V ), L, gS) ∼= H

0,v−q

2,∂
(V \ sing(V ), L∗, gS) = 0

Proof. Let us define F := π∗L. Then F is an almost positive line bundle over Ṽ . Using the
Bochner-Kodaira-Nakano inequality, see [6] 13.3, and the fact that F is positive on an open subset

of Ṽ , we easily get Hv,q

∂
(Ṽ , F ) = 0 for q > 0. Now the conclusion follows immediately by applying

Theorem 2.10. �

2.3. Negatively curved Kähler manifolds with finite volume. Let (M,h) be a complete
Kähler manifold with finite volume and pinched negative sectional curvatures −b2 ≤ sech ≤ −a2
for some constants 0 < a ≤ b. An important result concerning the geometry of such manifolds is
the one proved in [23] by Siu and Yau. This result provides the existence of a compactification
of M in terms of a complex projective variety with only isolated singularities. More precisely if
(M,h) is a Kähler manifold as above then there exists a projective variety V ⊂ CP

n with only
isolated singularities such that reg(V ) and M are biholomorphic. The purpose of this subsection is
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to investigate the L2-∂-cohomology of such Käher manifolds with the help of our Th. 1.9 and the
Siu-Yau compactification. Concerning this task the main result of this subsection reads as follows:

Theorem 2.12. Let (M,h) be a complete Kähler manifold of complex dimension m with finite
volume. Assume that the sectional curvatures of (M,h) satisfies −b2 ≤ sech ≤ −a2 for some

constants 0 < a ≤ b. Let V ⊂ CP
n be the Siu–Yau compactification of M and let π : Ṽ → V be a

resolution of V . Then we have the following isomorphism for each q = 0, ...,m

H
m,q

2,∂
(M,h) ∼= H

m,q

∂
(Ṽ ).

Proof. Let ψ : M → reg(V ) be a biholomorphism between M and reg(V ). Let us label by υ the
Kähler metric (ψ−1)∗h. Henceforth we will indentify (M,h) and (reg(V ), υ). According to [25]
Lemma 3.2 we know that there exists a compact subset D ⊂M and a bounded continuous 1-form
θ such that on M \D we have dθ = ω where ω is the Kähler form of h. Hence the second condition
in the statement of Th. 1.9 is fulfilled. We are left to show that the sheaves {π∗Cm,q

D,η , q ≥ 0}
are fine where D ⊂ Ṽ is the divisor with only normal crossings given by D = π−1(sing(V )) and
η := (π|Ṽ \D)

∗υ. Let U := {Ui}i∈I be an open cover of V . Since V is compact there exists a finite

open cover of V , W := {W1, ...,Wr} for some positive integer r, such that W is subordinate to U
and such that for any i, j ∈ {1, ..., r} with i 6= j we have sing(V )∩Wi∩Wj = ∅. Now we can easily
construct a partition of unity {φ1, ..., φr} subordinated to W such that the following properties
hold:

• φi : V → [0, 1] is continuous for each i = 1, ..., r
• φi|reg(V ) : reg(V ) → [0, 1] is smooth for each i = 1, ..., r
• if p ∈ sing(V ) ∩ supp(φi) then there exists a neighborhood A of p which is open in V and
such that φi|A = 1.

It is immediate to check that ‖dφi‖L∞Ω1(reg(V ),υ) <∞. Hence by Lemma 1.11 we can conclude that

{π∗Cm,q
D,η , q ≥ 0} is a complex of fine sheaves. The theorem is thus established. �

We have now some direct applications of Th. 2.12.

Corollary 2.13. In the setting of Th. 2.12. Then Corollaries 1.12–1.15 hold for (M,h).

Corollary 2.14. Let (M,h) and (N, g) be as in Th. 2.12. Let V ⊂ CP
s, W ⊂ CP

r be the
corresponding Siu-Yau compactification. Assume that V and W are birationally equivalent. Then
for each q = 0, ...,m we have

H
m,q

2,∂
(M,h) ∼= H

m,q

2,∂
(N, g) H

0,q

2,∂
(M,h) ∼= H

0,q

2,∂
(N, g)

Proof. This follows from Cor. 1.16. �
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