We consider 2-dimensional integer rectifiable currents which are almost area minimizing and show that their tangent cones are everywhere unique. Our argument unifies a few uniqueness theorems of the same flavor, which are all obtained by a suitable modification of White's original theorem for area minimizing currents in the euclidean space. This note is also the first step in a regularity program for semicalibrated 2-dimensional currents and spherical cross sections of 3-dimensional area minimizing cones.
Uniqueness of tangent cones for two-dimensional almost-minimizing currents / DE LELLIS, Camillo; Spadaro, EMANUELE NUNZIO; Spolaor, Luca. - In: COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS. - ISSN 0010-3640. - 70:7(2017), pp. 1402-1421. [10.1002/cpa.21690]
Uniqueness of tangent cones for two-dimensional almost-minimizing currents
Camillo De Lellis;Emanuele Spadaro;
2017
Abstract
We consider 2-dimensional integer rectifiable currents which are almost area minimizing and show that their tangent cones are everywhere unique. Our argument unifies a few uniqueness theorems of the same flavor, which are all obtained by a suitable modification of White's original theorem for area minimizing currents in the euclidean space. This note is also the first step in a regularity program for semicalibrated 2-dimensional currents and spherical cross sections of 3-dimensional area minimizing cones.File | Dimensione | Formato | |
---|---|---|---|
DeLellis_Uniqueness-of-tangent_2017.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
266.33 kB
Formato
Adobe PDF
|
266.33 kB | Adobe PDF | Contatta l'autore |
DeLellis_preprint_Uniqueness-of-tangent_2017.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
219.92 kB
Formato
Unknown
|
219.92 kB | Unknown |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.