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UNIQUENESS OF TANGENT CONES FOR 2-DIMENSIONAL ALMOST
MINIMIZING CURRENTS

CAMILLO DE LELLIS, EMANUELE SPADARO, AND LUCA SPOLAOR

Abstract. We consider 2-dimensional integer rectifiable currents which are almost area
minimizing and show that their tangent cones are everywhere unique. Our argument uni-
fies a few uniqueness theorems of the same flavor, which are all obtained by a suitable mod-
ification of White’s original theorem for area minimizing currents in the euclidean space.
This note is also the first step in a regularity program for semicalibrated 2-dimensional
currents and spherical cross sections of 3-dimensional area minimizing cones.

In this paper we consider 2-dimensional integer rectifiable currents T in the euclidean
space R

n+2 which are almost (area) minimizing, in the following sense (for the notation
and terminology we refer the reader to the textbooks [6] and [10]).

Definition 0.1. An m-dimensional integer rectifiable current T in R
m+n is almost (area)

minimizing if for every x 6∈ spt(∂T ) there are constants C0, r0, α0 > 0 such that

‖T‖(Br(x)) ≤ ‖T + ∂S‖(Br(x)) + C0 r
m+α0 (0.1)

for all 0 < r < r0 and for all integral (m+ 1)-dimensional currents S supported in Br(x).

Our aim is to extend Brian White’s classical result (cf. [11]) on the uniqueness of tangent
cones for area minimizing 2-dimensional currents to almost minimizers, an abstract result
which can then be applied to several interesting geometric problems, recovering quickly
known statements but also gaining some new ones. To state the main theorem we introduce
the current (ιx,r)♯T , where the map ιx,r is given by R

m+n ∋ y 7→ y−x
r

∈ R
m+n. Recall that

an area minimizing cone S is an integral area minimizing current such that (ι0,r)♯S = S
for every r > 0 (cf. [10, Theorem 19.3]).

Theorem 0.2. Assume T is a 2-dimensional integer rectifiable almost minimizing current
in R

n+2. Then for every x ∈ spt(T ) \ spt(∂T ) there is a 2-dimensional area-minimizing
cone Tx with ∂Tx = 0 such that Tx,r → Tx (in the sense of currents) as r ↓ 0.

From this theorem we conclude three interesting corollaries as special cases.

Definition 0.3. Let Σ ⊂ Rm+n be a C2 submanifold and U ⊂ R
m+n an open set.

(a) An m-dimensional integral current T with finite mass and spt(T ) ⊂ Σ ∩ U is area-
minimizing in Σ ∩ U if M(T + ∂S) ≥ M(T ) for any m + 1-dimensional integral
current S with spt(S) ⊂⊂ Σ ∩ U .

(b) A semicalibration (in Σ) is a C1 m-form ω on Σ such that ‖ωx‖c ≤ 1 at every
x ∈ Σ, where ‖ ·‖c denotes the comass norm on ΛmTxΣ. An m-dimensional integral

current T with spt(T ) ⊂ Σ is semicalibrated by ω if ωx(~T ) = 1 for ‖T‖-a.e. x.
1
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(c) An m-dimensional integral current T supported in ∂BR(x) ⊂ R
m+n is a spherical

cross-section of an area-minimizing cone if x×× T is area-minimizing.

In all these cases, when m = 2, we conclude the uniqueness of tangent cones from
Theorem 0.2 and the following

Proposition 0.4. Under the assumptions of Definition 0.3, any m-dimensional current T
as in (a), (b) or (c) is almost minimizing in the sense of Definition 0.1 and therefore, by
Theorem 0.2, it has a unique tangent cone at every x 6∈ spt(∂T ) if m = 2.

In this paper we will consider only Riemannian submanifolds Σ of some euclidean space.
However, since all the statements are local, by Nash’s isometric embedding theorem we
can infer the same conclusions in any abstract Riemannian manifold which is sufficiently
regular: in particular, since we need C2 regularity in the embedded case, in the abstract
setting we can derive the same consequences when the Riemannian metric is C2,α for some
positive α.

The uniqueness of tangent cones for 2-dimensional area-minimizing currents in Riemann-
ian manifolds (case (a)) has been proved first by Chang in [4]. The same statement for
semicalibrated integral 2-dimensional cycles (case (b)) has been shown more recently by
Pumberger and Rivière in [8]. As far as we know the result for spherical cross sections of
3-dimensional area-minimizing cones is instead new. Our motivation comes in fact from
the interior regularity theory for all these objects: in a series of forthcoming papers we will
prove that any 2-dimensional current as in (a), (b) or (c) is either a regular submanifold in
the interior or has isolated singularities. The latter result is due to Chang in case (a), but
as far as we know the details of one crucial step in Chang’s proof have never appeared. It
is instead due to Bellettini and Rivière for a particular case of (b), see [3]: in their theorem
Σ is the 5-dimensional standard sphere and the semicalibrated currents are the so-called
special legendrian cycles. In all the other situations such regularity theorem would be a
new result and this note is the first step of our program to prove it.

In codimension 1 the uniqueness of tangent cones is known at isolated singularities thanks
to the pioneering work of Simon, cf. [9]. The uniqueness of tangent cones is widely open
in dimension higher than 2 and general codimension. Some interesting higher dimensional
cases have been recently covered by Bellettini in [1, 2].

0.1. Acknowledgments. The research of Camillo De Lellis and Luca Spolaor has been
supported by the ERC grant agreement RAM (Regularity for Area Minimizing currents),
ERC 306247. The authors are warmly thankful to Bill Allard and Guido de Philippis for
several important discussions.

1. Proof of Proposition 0.4

We start remarking that in the semicalibrated case we do not loose any generality if
we consider Σ to be the ambient euclidean space. We then point out one elementary
variational property of semicalibrated currents and spherical cross sections of minimizing
cones. We will use the notation Im(R

m+n) for the space of integral currents in R
m+n (cf.

[6, Section 4.1.24]).
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Lemma 1.1. Let k ∈ N \ {0}, ε0 ∈ [0, 1], Σ ⊂ R
m+n be a Ck+1,ε0 m + n̄-dimensional

submanifold, V ⊂ R
m+n an open subset and ω a Ck,ε0 m-form on V ∩ Σ. If T is a cycle

in V ∩ Σ semicalibrated by ω, then T is semicalibrated in V by a Ck,ε0 form ω̃.

Proof. The argument is straightforward: we just need to extend ω to a form ω̃ on the
open set V in such a way that ‖ω̃x‖c ≤ 1 for every x and the regularity of ω is preserved.
Without loss of generality it suffices to do this on a tubular neighborhood U of Σ ∩ V
on which there is a Ck,ε0 orthogonal projection p : U → Σ ∩ U (we then multiply this
extension by a function ϕ ∈ C∞

c (U) which is identically 1 on Σ and satisfies 0 ≤ ϕ ≤ 1;
the resulting form can then be extended to V by setting it equal to 0 where it is not yet
defined). For x ∈ U we set y := p(x) ∈ Σ and let py : Rm+n → TyΣ be the orthogonal
projection. We then set ω̃x(v1, . . . , vm) = ωy(py(v1), . . . ,py(vm)). Observe that ω̃ is not
p♯ω (in general the latter would not satisfy ‖ω̃x‖c ≤ 1). �

Proposition 1.2. Let T be as in Definition 0.3 (b) (in which case we assume Σ = R
m+n)

or (c). Then there is a constant Ω such that

M(T ) ≤ M(T + ∂S) +ΩM(S) ∀S ∈ Im+1(R
m+n) with compact support. (1.1)

Moreover, Ω ≤ ‖dω‖0 in case (b) and Ω ≤ (m+ 1)R−1 in case (c).
Moreover, if χ ∈ C∞

c (Rm+n \ spt(∂T ),Rm+n), we have

δT (χ) = T (dω χ) in case (b), (1.2)

δT (χ) =

∫

mR−1 x · χ(x) d‖T‖(x) in case (c). (1.3)

Proof. We first prove (1.1). Assume we are in case (c). Without loss of generality we can
assume x = 0 and R = 1. Therefore fix S compactly supported and consider W = T +∂S.
Next, let p : Rm+n → B1(0) be the orthogonal projection and set S ′ = p♯S and W ′ :=
p♯W = T + ∂p♯S (where the latter identity holds because spt(T ) ⊂ ∂B1(0)). The current
Z := 0××W ′ − S ′ is then a competitor for the minimality of 0×× T and observe, moreover,
that since spt(W ′) ⊂ B1(0), we have M(Z) ≤ (m+ 1)−1M(W ′). Then we have

0 ≤(m+ 1)(M(Z)−M(0×× T )) ≤ M(W ′)−M(T ) + (m+ 1)M(S ′)

≤M(W )−M(T ) + (m+ 1)M(S) .

In case (b), if ω is the semicalibrating form, we can then estimate

M(T ) = T (ω) = W (ω)− ∂S(ω) ≤ M(W )− S(dω) ≤ M(W ) + ‖dω‖0M(S) .

Next, (1.3) is simply the stationarity of T in ∂B1(0). As for (1.2) the formula seems new
in the literature and we provide here a simple proof. Fix χ and consider the maps Φt(x) :=
x + tχ(x) and Λ(t, x) = Φt(x). We then denote by J0, εK the current in I1(R) induced by
the oriented segment {t : 0 ≤ t ≤ ε}. We define Tε := (Φε)♯T and Sε := Λ♯(J0, εK×T ). We
then have ∂Sε = Tε − T and hence

M(Tε)−M(T ) ≥ Tε(ω)− T (ω) = Sε(dω) = J0, εK × T (Λ♯dω) =: h(ε) . (1.4)
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Since h is C1 and h(0) = 0, by a Taylor expansion we conclude εδT (χ) ≥ εh′(0) + o(ε).
On the other hand, since the latter inequality is valid for both positive and negative ε, we
infer δT (χ) = h′(0). We thus only need to show the identity h′(0) = T (dω χ). Consider
the set of ordered multiindices I = {1 ≤ i1 < i2 < . . . < im+1} and let dω =

∑
fIdx

I ,
where dxI = dxi1 ∧ . . . ∧ dxim+1 . We then have

(Λ♯dω)(x,t) =
∑

fI(Φt(x))dΦ
i1
t ∧ . . . ∧ dΦ

im+1

t .

Next, we will denote by o(1) any continuous function of x and t which vanish at t = 0 and
we let π : R × R

m+n → R
m+n be the projection π(t, x) = x. Since Φ(0, x) = x and fI is

continuous we conclude

(Λ♯dω)(x,t) =
∑

fI(x)dΦ
i1
t ∧ . . . ∧ dΦ

im+1

t + o(1) =
∑

I

fI(x)
(

dxI +
∑

1≤j≤k+1

fI(x)χ
ij (x)dxi1 ∧ . . . ∧ dxij−1 ∧ dt ∧ dxij+1 ∧ . . . ∧ dxm+1

)

+ o(1)

= π♯dω + dt ∧
∑

I

fI(x)
∑

j

(−1)jχij (x)dxi1 ∧ . . . ∧ dxij−1 ∧ dxij+1 ∧ . . . ∧ dxm+1 + o(1) .

Thus,

(Λ♯dω)(x,t) = π♯dω + dt ∧ π♯(dω χ) + o(1) .

In particular, since dω is orthogonal to dt, we have J0, εK × T (π♯dω) = 0. Thus we can
write

h(ε) = J0, εK × T (dt ∧ π♯(dω χ)) + o(1)εM(T ) = εT (dω χ) + o(ε) ,

from which we finally conclude h′(0) = T (dω χ). �

Proof of Proposition 0.4. Case (a). Consider x ∈ Σ and a ball Br(x) ⊂ R
m+n. If r̄ is

sufficiently small there is a well-defined C1 orthogonal projection p : Br̄(x) → Σ with the
property that Lip(p) ≤ 1 + CAr, where C is a geometric constant and A denotes the L∞

norm of the second fundamental form of Σ. Consider T area-minimizing in Σ and assume
r̄ < dist(x, spt(∂T )). Let r ≤ r̄ and S ∈ Im+1(R

m+n) be such that spt(S) ⊂ Br(x). We
set W := T + ∂S. If ‖W‖(Br(x)) ≥ ‖T‖(Br(x)) there is nothing to prove, otherwise by
the standard monotonicity formula we have ‖W‖(Br(x)) ≤ ‖T‖(Br(x)) ≤ Crm. Then
W ′ := p♯W is an admissible competitor for the minimality property of T and we have

‖T‖(Br(x)) ≤ ‖W ′‖(Br(x)) ≤ (Lip(p))m‖W‖(Br(x)) ≤ ‖W‖(Br(x)) + Crm+1 .

Case (b)&(c). First observe that, by Lemma 1.1, in case (b) we can assume, w.l.o.g.,
that Σ = R

m+n. Fix r < dist(x, spt(∂T )) and let S ∈ Im+1(R
m+n) be such that spt(S) ⊂

Br(x). As above, either ‖W‖(Br(x)) ≥ ‖T‖(Br(x)), in which case there is nothing to prove,
otherwise by the standard monotonicity formula we have ‖W‖(Br(x)) ≤ ‖T‖(Br(x)) ≤
Crm (observe that, by (1.2) and (1.3), T induces a varifold with bounded mean curvature,
which in turn implies Allard’s monotonicity formula, cf. [10, Section 17]). In the latter
case, by the isoperimetric inequality there exists S ′ ∈ Im+1(R

m+n) such that

∂S ′ = ∂S and M(S ′) ≤ Crm+1 .
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Applying now (1.1) to this current S ′ we get the desired conclusion, with C1 = CΩ. �

Remark 1.3. Observe that we have achieved (0.1) with any fixed r0 <
1
2
dist(x, spt(∂T )),

α0 = 1 and C0 = CA, in case (a), C0 = CΩ, in the cases (b) and (c), where the constant
C depends only upon ‖T‖(B2r0)(x).

2. Two technical lemmas

It is known that the almost minimizing condition of Definition 0.1 is alone sufficient to
derive a monotonicity formula. However, we have been unable to find a reference and we
therefore provide the proof below. Note also that in the geometric cases (a), (b) and (c), a
more precise form of the monotonicity formula could be derived directly appealing to the
fact that the corresponding induced varifolds have bounded mean curvature.

Proposition 2.1 (Almost Monotonicity). Let T ∈ Im(R
m+n) be an almost minimizer and

x ∈ spt(T ) \ spt(∂T ). There are constants C02, r̄, α0 > 0 such that
∫

Br(x)\Bs(x)

|(z − x)⊥|2

|z − x|m+2
d‖T‖(z) ≤ C02

(‖T‖(Br(x))

ωk rm
−

‖T‖(Bs(x))

ωm sm
+ rα0

)

(2.1)

for all 0 < s < r < r̄ (in (2.1) (z − x)⊥ denotes the projection of the vector z − x on the
orthogonal complement of the approximate tangent to T at z). In particular, the function

r →
‖T‖(Br(x))

ωk rm
+ rα0 is nondecreasing.

Proof of Proposition 2.1. Assume without loss of generality x = 0. For a.e. r the current
∂(T Br) is integral (cf. [10, Section 28]) and we have, by (0.1) with W = 0×× ∂(T Br),

‖T‖(Br) ≤ ‖W‖(Br) + C0r
m+α0 =

r

m
M(∂(T Br)) + C0r

m+α0 . (2.2)

Set f(r) := ‖T‖(Br) and observe that f is an nondecreasing function and so a func-
tion of bounded variation. As such it has left and right limits at each point and in fact
f(r) = f(r−). In particular we can decompose its distributional derivative Df , which is a
nonnegative measure, as Df = f ′L + µs, where L denotes the Lebesgue one-dimensional

measure and µs is the singular part ofDf . We multiply (2.2) bymr−m−1 and add f ′(r)
rm

+ µs

rm
:

µs

rm
+

1

rm
f ′(r)−

1

rm
M(∂(T Br)) ≤

Df

rm
−

mf(r)

rm+1
+ C01r

α0−1.

Integrating on the interval [s, r[ (where r0 > r > s) we reach
∫

[s,r[

1

ρm
dµs(ρ)

︸ ︷︷ ︸
Is

+

∫ r

s

1

ρm
(f ′(ρ)−M(∂(T Bρ))) dρ

︸ ︷︷ ︸
Ia

≤
f(r)

rm
−

f(s)

sm
+ C0r

α0 .

To conclude we only need to prove that I := Is + Ia bounds the left hand side of (2.1).
Denote by x‖ the projection of x on the approximate tangent space to T at x. Recall first
(cf. [10, eq. (28.6)]) that

Tρ := 〈T, | · |, ρ〉 = ∂(T Bρ)− (∂T ) Bρ = ∂(T Bρ) .
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Next introduce the Borel set E := {|x‖| > 0} and its complementary Ec and recall that,
by the coarea formula (cf. [10, Lemma 28.1 & Lemma 28.5]), for any Borel map g we have

∫

Br\Bs

g(y)
|y‖|

|y|
d‖T‖(y) =

∫ r

s

∫

g(x)d‖Tρ‖(x) dρ . (2.3)

Let R be the countable rectifiable set such that ‖T‖ = Θ(T, x)Hm R. It then follows
from the slicing theory that ‖Tρ‖ = Θ(T, x)Hm−1 (R ∩ ∂Bρ) for a.e. ρ and thus inserting
g = 1Ec in (2.3) above we derive

Hm−1(Ec ∩ ∂Bρ) ≤ ‖Tρ‖(E
c) = 0 for a.e. ρ. (2.4)

Thus, since |x‖| > 0 for every x ∈ (Br \Bs) ∩ E, we conclude

Ia =

∫ r

s

1

ρm

∫

E

|x| − |x‖|

|x‖|
d‖Tρ‖(x) dρ =

∫ r

s

1

ρm

∫

E

|x|2 − |x‖|2

|x|‖(|x|+ |x‖|)
d‖Tρ‖(x) dρ

≥

∫ r

s

1

2ρm+2

∫

E

|x⊥|2|x|

|x‖|
d‖Tρ‖(x) dρ =

∫

(Br\Bs)∩E

|x⊥|2

2|x|m+2
d‖T‖(x) . (2.5)

Now observe that on Ec, the complement of E, we have |x⊥| = |x| and thus
∫

(Br\Bs)∩Ec

|x⊥|2

2|x|m+2
d‖T‖(x) =

∫

(Br\Bs)∩Ec

1

2|x|m
d‖T‖(x) . (2.6)

Next, denote by S the set of radii r such that Hm−1(Ec ∩ ∂Br) > 0. We then must have

‖T‖(Ec ∩ (Bρ \Bτ )) ≤ ‖T‖
(
∪s∈S∩[τ,ρ[∂Bs

)
≤ Df(S ∩ [τ, ρ[)

(2.4)

≤ µs([τ, ρ[)

for every 0 < τ < ρ (in fact the inequalities above are all identities, but this is not really
needed). Thus for every N ∈ N \ 0 we can estimate
∫

(Br\Bs)∩Ec

1

2|x|m
d‖T‖(x) ≤

N∑

i=1

1

2smi−1

‖T‖(Ec ∩ (Bsi \Bsi−1
)) ≤

N∑

i=1

1

2smi−1

∫

[si−1,si[

dµs

where si := s+ i
N
(r − s). In particular letting N ↑ ∞ we concude
∫

(Br\Bs)∩Ec

1

2|x|m
d‖T‖(x) ≤

∫

[s,r[

1

2ρm
dµs(ρ) = Is . (2.7)

From (2.5), (2.6) and (2.7) we conclude that Ia+Is bounds the right hand side of (2.1). �

The following proposition tells us that if a current as in (a), (b) or (c) in Definition 0.3
is suitably decomposed, then each element of the decomposition is again respectively of
type (a), (b) or (c).

Proposition 2.2. Let T be as in Definition 0.3(♦), with ♦ = a, b or c, and suppose that
there are x ∈ spt(T ) \ spt(∂T ), r̄ > 0 and J currents T 1, . . . , T J such that

T Br̄(x) =
J∑

j=1

T j , ∂T j Br̄(x) = 0 and ‖T‖(Br̄(x)) =
J∑

j=1

‖T j‖(Br̄(x)) .
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Then each T j satisfies (♦) in Definition 0.3.

Proof. We divide the proof in the three cases of Definition 0.3.

(a) Suppose by contradiction that there exist j ∈ {1, . . . , J} and S ∈ Im+1(Σ) with
spt(T ) ⊂ Br̄(x) such that M(T j Br̄(x)) > M(T j Br̄(x)+∂S). Then it is straightforward
to check that M(T Br̄(x) + ∂S) < M(T Br̄(x)), which contradicts the minamility of T .

(b) By contradiction, suppose there exists j ∈ {1, . . . , J} such that T j is not semical-
ibrated by ω. Assume j = 1. Then since ‖ω‖c ≤ 1, we have T 1(ω) < ‖T 1‖(Br̄(x)) and
T j(ω) ≤ ‖T j‖(Br̄(x)), for every j ∈ {2, . . . , J}. It follows that

‖T‖(Br̄(x)) = T (ω) =
J∑

j=1

T j(ω) <
J∑

j=1

‖T j‖(Br̄(x)) = ‖T‖(Br̄(x)))

which gives a contradiction and concludes the proof.

(c) Without loss of generality we can assume x = 0 and R = 1. Again by contradiction
assume there exist j ∈ {1, . . . , J} and S ∈ Im+1(R

m+n) such that ∂(S C) = ∂(0×× T j C)
and M(S C) < M(0×× T j C), where

C :=
{
λz : z ∈ Br̄(x) ∩ ∂B1(0), λ ∈]0, 1[

}
.

We can assume j = 1. Notice also that

M((0×× T ) C) =
1

m
‖T‖(Br̄(x)) =

1

m

J∑

j=1

‖T j‖(Br̄(x)) =

J∑

j=1

M((0×× T j) C). (2.8)

Then we have

M((0×× T ) C) ≤ M
((

S +

J∑

j=2

0×× T j
)

C
)

≤ M(S C) +M
( J∑

j=2

(0×× T j) C
)

< M((0×× T 1) C) +M
( J∑

j=2

(0×× T j) C
)

(2.8)
= M((0×× T ) C).

The latter is a contradiction and thus completes the proof. �

3. A generalization of White’s epiperimetric inequality and the proof of

Theorem 0.2

In this section we show how Theorem 0.2 follows from a suitable epiperimetric inequality
due to Brian White. However, since we prove a more accurate version of Theorem 0.2,
we state it again more precisely in the following theorem. From now, for any given R ∈
Im(R

m+n) we define F(R) := inf{M(Z) +M(W ) : Z ∈ Im,W ∈ Im+1, Z + ∂W = R}.
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Theorem 3.1 (Uniqueness of tangent cones for almost minimizers). Let T ∈ I2(R
n+2) be

an almost minimizer. Then there is a γ0 > 0, J 2-dim. distinct planes πi, each pair of
which intersect only at 0, and J integers ni such that, if we set S :=

∑

i ni JπiK, then
F
(
(Tx,r − S) B1

)
≤ C11 r

γ0 , (3.1)

dist
(
spt(T Br(x)), spt(S)

)
≤ C11 r

1+γ0 . (3.2)

Moreover, there are r̄ > 0 and J ≥ 1 currents T j ∈ I2(Br̄(x)) such that

(i) ∂T j Br̄(x) = 0 and each T j is an almost minimizer;
(ii) T Br̄(x) =

∑

j T
j and spt(Tj) ∩ spt(Ti) = {x} for every i 6= j;

(iii) njJπjK is the unique tangent cone to each T j at x.

From the latter theorem, Proposition 0.4 and Proposition 2.2 we conclude

Corollary 3.2. Let T be as in Definition 0.3(♦), with ♦ = a, b or c, and x ∈ spt(T ) \
spt(∂T ). Then all the conclusions of Theorem 3.1 hold for T and moreover each T j satisfies
Definition 0.3(♦).

3.1. White’s epiperimetric inequality and its generalization. As already mentioned,
the key ingredient in the proof of Theorem 3.1 is a suitable generalization of White’s epiperi-
metric inequality [11]. We record the main ingredient of White’s argument in the following
lemma. Since however the paper [11] does not state this lemma explicitely, we provide in
the last section a brief argument, referring to propositions and lemmas which are instead
explicitely stated in [11] (the only difference is in a technical point, namely the estimate
(4.1), for which we point out a shorter argument).

Lemma 3.3. Let S ∈ I2(R
n+2) be an area minimizing cone. There exists a constant ε13 > 0

with the following property. If R := ∂(S B1) and Z ∈ I1(∂B1) is a cycle with

(i) F(Z − R) < ε13,
(ii) M(Z)−M(R) < ε13,
(iii) dist

(
spt(Z), spt(R)

)
< ε13,

then there exists H ∈ I2(B1) such that ∂H = Z and

‖H‖(B1)− ‖S‖(B1) ≤ (1− ε13)
[
‖0××Z‖(B1)− ‖S‖(B1)

]
.

A simple compactness argument allows us to generalize this lemma in the following sense.

Proposition 3.4. Let S ∈ I2(R
n+2) be an area minimizing cone. For every C12 > 0 there

exists a constant ε11 > 0, depending only on the constants C01 and α0 of Definition 0.1 and
upon S, with the following property. Assume that T ∈ I2(R

n+2) is an almost minimizer
with 0 ∈ spt(T ) and set Tρ := (ι0,ρ)♯T . If r is a positive number with

• 0 < 2 r < min{2−1dist(0, spt(∂T )), 2ε11},
• F

(
(T2r − S) B1

)
< 2 ε11, ‖T‖(B2r) ≤ C12r

2

• and ∂(T Br) ∈ I1(R
n+2),

then

‖Tr‖(B1)− ‖S‖(B1) ≤ (1− ε12)
(

‖0×× ∂(Tr B1)‖(B1)− ‖S‖(B1)
)

+ c̄ rα0 . (3.3)
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c̄ depends only on C01, α0 and Θ(0, S) and ε12 > 0 is any number smaller than some
ε̄ > 0, which also depends on C0, α0 and Θ(0, S). Moreover c̄ depends linearly on C01. In
particular, if T is as in Definition 0.3, then α0 = 1 and: c̄ depends linearly on A := ‖AΣ‖∞
in case (a), it depends linearly on Ω := ‖dω‖∞ in case (b) and it quals C0R

−1 for some
geometric constant C0 in case (c) (in the sense of Remark 1.3).

Proof. We argue by contradiction and assume there exist sequences of almost minimizers
(T k)k∈N ⊂ I2(R

2+n) and radii rk ↓ 0 with 0 < 2 rk < dist(0, spt(∂T k)) such that Rk :=
(T k)rk satisfies F((Rk − S) B2) <

1
k
and

‖Rk‖(B1)− ‖S‖(B1) >
(

1−
1

k

)(

‖0×× ∂(Rk B1)‖(B1)− ‖S‖(B1)
)

+ k rα0

k . (3.4)

It is important to notice that, in contradicting the statement of Proposition 3.4, the currents
T k satisfy (0.1) for some constants C0 and α0 which are fixed, i.e. independent of k. First
of all, without loss of generality we can assume

‖0×× ∂(Rk B1)‖(B1)− ‖S‖(B1) ≥ 0 ; (3.5)

indeed if ‖0×× ∂(Rk B1)‖(B1)−‖S‖(B1) < 0 we could use the almost minimality and the
appropriate rescaling to conclude

‖Rk‖(B1)− ‖S‖(B1) ≤ ‖0×× ∂(Rk B1)‖(B1)− ‖S‖(B1) + C1r
α0

k

≤
(

1−
1

k

)(

‖0×× ∂(Rk B1)‖(B1)− ‖S‖(B1)
)

+ C1 r
α0

k ,

contradicting (3.4) for k large enough.
Observe that we have a uniform bound for ‖Rk‖(B2). Thus, by the usual slicing theorem,

passing to a subsequence there is a radius ρ ∈]3
2
, 2[ such M(∂((Rk − S) Bρ)) is uniformly

bounded. On the other hand Rk − S is converging to 0 in the sense of currents and hence,
by [10, Theorem 31.2], F((Rk − S) Bρ) → 0. This means that there are integral currents
Hk, Gk with M(Hk) +M(Gk) → 0 such that

(Rk − S) Bρ = ∂Hk +Gk .

Taking the boundary of the latter identity we conclude that ∂Gk = ∂((Rk−S) Bρ). Now,
rescaling the almost minimality property of T k, we conclude that

‖Rk‖(Bρ) ≤ ‖S‖(Bρ) +M(Gk) + C1r
α0

k .

On the other hand, since (M(Gk) + rk) ↓ 0, we infer

lim sup
k→∞

‖Rk‖(Bρ) ≤ ‖S‖(Bρ) .

Since however Rk → S in B2, we also have

‖S‖(Bρ) ≤ lim inf
k→∞

‖Rk‖(Bρ) .

We thus conclude that ‖Rk‖
∗
⇀ ‖S‖ on Bρ in the sense of measures and, since ‖S‖(∂B1) = 0

by the conical property of S, we infer that ‖Rk‖(B1) → ‖S‖(B1). Thus (3.4) and (3.5)
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imply
lim
k→∞

M(∂(Rk B1)) = M(∂(S B1)) . (3.6)

The almost monotonicity formula for T k (in the rescaled version for Rk) implies through
standard arguments that spt(Rk) converges to spt(S) in the Hausdorff sense: one can
follow, for instance, the proof of [10, Lemma 17.11]. Finally, again by [10, Theorem 31.2],
we conclude that F((Rk−S) B1) → 0 and hence, arguing as above, we infer the existence
of integer rectifiable currents Gk such that ∂Gk = ∂((Rk − S) B1) and M(Gk) → 0. In
turn this implies F(∂(Rk B1)−∂(S B1)) → 0. So all the assumptions of Lemma 3.3 are
satisfied, and there exist integral currents Hk such that ∂Hk = ∂(Rk B1) and

‖Hk‖(B1)− ‖S‖(B1) ≤ (1− ε13)
(
‖0×× ∂(Rk B1)‖(B1)− ‖S‖(B1)

)
. (3.7)

By the almost minimality of T k and the usual rescaling, we conclude

‖Rk‖(B1) ≤ ‖Hk‖(B1) + C0r
α0

k .

Thus,

‖Rk||(B1)− ‖S‖(B1) ≤ ‖Hk‖(B1)− ‖S‖(B1) + C0r
α0

k

(3.7)

≤ (1− ε13)
(
‖0×× ∂(Rk B1)‖(B1)− ‖S‖(B1)

)
+ C0r

α0

k .

However, when k is so large that 1
k
< ε13 and k > C0, the latter inequality contradicts

(3.4) (recall (3.5)). �

3.2. Proof of Theorem 3.1. Without loss of generality from now on we assume that
x = 0 and that dist(0, spt(∂T )) ≥ 2. Moreover we set Tr := (ι0,r)♯T .

Step 1. Blow-up. By the almost monotonicity, the family {Tr}0<r≤1 ⊂ I2(R
n+2)

enjoys a uniform bound for ‖Tr‖(K) whenever K ⊂ R
n+2 is a compact set. Moreover, for

any U ⊂⊂ R
n+2 open, ∂Tr U = 0, provided r is large enough. It follows that we can

apply the compactness theorem of integral currents, and for every sequence rk ↓ 0 we can
extract a subsequence Tρk converging to an integral current S with ∂S = 0. Observe also
that we can argue as in the proof of Proposition 3.4 to conclude that for every N0 ∈ N

there is a subsequence, not relabeled, and a r̄ ∈]N0, N0 + 1[ with the following properties

• ‖Tρk‖(Br̄) → ‖S‖(Br̄);
• There are currents Hk ∈ I2(R

n+2) with M(Hk) ↓ 0 and ∂Hk = ∂((Tρk − S) Br̄).

We then easily conclude that S is area minimizing in Br̄ and that ‖Tρk‖(V ) → ‖S‖(V ) for
any open set V ⊂⊂ Br̄ with ‖S‖(∂V ) = 0. A standard argument shows that these prop-
erties remain then true for every ball and for the entire sequence {Tρk}. As a consequence
of the fact that Θ(0, T ) exists, we then conclude that

‖S‖(Br(0)) = Θ(T, 0)r2 := Qω2r
2

for all radii but an (at most) countable family (recall that ω2 denotes the area of the unit
disk in R

2). It is then a standard fact, using the monotonicity formula for area-minimizing
currents, that S is a cone (see for instance [10]). Finally, it is well known that 2-dimensional
area minimizing cones are all sum of planes intersecting only at the origin (see for instance
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[7]). So we conclude from the standard theory of currents (see for instance the proof of
Proposition 3.4) that F((Tρk − S) Br) → 0 for every r > 0.

Let ε11 be the constant of Proposition 3.4. We then conclude the existence of a radius
r0 > 0 such that, for every r < r0 there is an an area minimizing cone S such that
F((T2r − S) B1) ≤ 2 ε11. We can then apply (3.3) for every 0 < r < r0 such that
∂(T Br) ∈ I1(∂Br) (which holds for a.e. r). After scaling back and multiplying by r2, we
get

M(T Br)−Qω2 r
2 ≤ (1− ε12)

(

M(0×× ∂(T Br))−Qω2 r
2
)

+ c̄ r2+α0 for a.e. r < r0 .

(3.8)
Set f(r) := M(T Br) − Qω2 r

2. Since r 7→ M(T Br) is monotone, the function f is
differentiable a.e. and its distributional derivative is a measure. Its absolutely continuous
part coincides a.e. with the classical differential and its singular part is nonnegative. Note
also that we can assume 2 + α0 > ε+ 2

1−ε
=: ε+ a for some ε > 0.

Therefore, by the well-known expansion for the mass of a cone, (3.8) reads

−a c̄ rε−1 ≤
d

dr

(
r−af(r)

)
, (3.9)

Integrating (3.9) we get −a
ε
c̄
(
rε − sε

)
≤ r−af(r)− s−af(s) for all 0 < s < r < r0. Setting

e(r) := f(r)
ω2r2

this implies

e(s) ≤
(s

r

)a

e(r) + C rε ∀ 0 < s < r < r0. (3.10)

Step 2. Consider now the map F (x) := x
|x|

and radii 0 < t
2
≤ s ≤ t < r0. By the area

formula,

M(F♯(T (Bt \Bs))) ≤

∫

Bt\Bs

|x⊥|

|x|3
d‖T‖

≤

(∫

Bt\Bs

|x⊥|2

|x|4
d‖T‖

)1/2

︸ ︷︷ ︸
:=I1

·

(∫

Bt\Bs

1

|x|2
d‖T‖

)1/2

︸ ︷︷ ︸
I2

.

I1 and I2 can be easily estimated using the almost monotonicity formula

I21
(2.1)

≤ e(t)− e(s) + C1 t
α0 ≤ e(t) + 2C1 t

α0

(3.10)

≤ C t
ε/2, (3.11)

I22 ≤
‖T‖(Bt)

s2

(2.1)

≤

(
t

s

)2 [
‖T‖(Br0)

r20
+ C1 r

α0

0

]

≤ C, (3.12)

where we took into account that, by (2.1), e(s) > −C1s
α for every s > 0 and that C > 0

is a constant depending on r0. In particular we conclude that

M(F♯(T (Bt \Bs))) ≤ C t
ε/2 ∀ 0 <

t

2
≤ s ≤ t < r0,
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and, by iteration on diadic intervals,

M(F♯(T (Br \Bs))) ≤ C r
ε/2 ∀ 0 < s < r < r0. (3.13)

Since ∂F♯(T (Br \Bs)) = ∂(Tr B1)− ∂(Ts B1) for a.e. 0 < s < r, from the definition of
F we get:

F
(
∂(Tr B1)− ∂(Ts B1)

) (3.13)

≤ C r
ε/2. (3.14)

This implies that the currents ∂(Tr B1) converges to a unique current Z. On the other
hand, by the almost monotonicity formula it follows easily that Tr B1 converge to the cone
0××Z. Since we already know that an appropriate sequence converges to S =

∑

i niJπiK,
we conclude that Tr converges to S.

Step 3. Proof of (3.1) and (3.2). In order to prove (3.1), it is enough to find integral
currents V and W such that Tr −Ts = ∂H +W and M(H)+M(W ) ≤ Crε/2. To this aim,
fix a small parameter a > 0. Let Jp, qK denote the current in I1(R) induced by the oriented
segment {t : p ≤ t ≤ q}. Similarly JpK ∈ I0(R) is the Dirac mass at the point p. Consider
the currents Va ∈ I3(R× R

n+2) defined by

Va :=
(

J0, 1K × T (Br \Ba)
) {

(t, x) ∈ R× R
n+2 : r−1|x| ≤ t ≤ s−1|x|

}

.

Next, we consider the map h : R × (Rn+2 \ {0}) ∋ (t, x) → t x
|x|

∈ R
n+2 and the currents

Ha := h♯Va. If d1, d2 : R × R
n+2 → R denote the functions d1(t, x) := t − s−1|x| and

d2(t, x) := t− r−1|x|, then for a.e. a > 0 we have

∂Va = J1K × T (Br \Bs)−
q
a
r
, a
s

y
× ∂(T Ba)

+ 〈J0, 1K × T (Br \Ba), d1, 0〉 − 〈J0, 1K × T (Br \Ba), d2, 0〉 .

Since ∂ commutes with the push-forward, we also get

∂Ha = F♯(T (Br \Bs)− h♯

(q
a
r
, a
s

y
× ∂(T Ba)

)

︸ ︷︷ ︸
Za

−Tr (B1 \B a
r
) + Ts (B1 \B a

s
), (3.15)

where we have used the fact that h(t, x) ≡ s−1x and h(t, x) ≡ r−1x respectively in the sets
{(t, x) ∈ R× (Rn+2 \ {0}) : t = s−1|x|} and {(t, x) ∈ R× (Rn+2 \ {0}) : t = r−1|x|}. It is
simple to see that there exists H such that Ha → −H as a ↓ 0. Thus (3.15) gives

−∂H = F♯(T (Br \Bs))− Tr B1 + Ts B1,

because M(Za) ≤ a |s−1 − r−1|M(∂(Ta B1)) ≤ C a |s−1 − r−1|M(∂(T0 B1)) → 0. To

conclude (3.1) we only need to estimate the mass ofH . To this extent, note that h♯(
∂
∂t
∧~T ) =
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dh( ∂
∂t
) ∧ h♯(~T ) and, since dh

(
∂
∂t

)
= x

|x|
,

H(ω) =

∫ 1

0

∫

Brt\Bst

〈h♯

(
∂
∂t
∧ ~T

)

, ωh(x)〉d‖R‖(x) dt

=

∫ 1

0

∫

Brt\Bst

〈 tx
|x|

∧ (F♯
~T ), ωtx/|x|〉 d‖T‖(x) dt

=

∫ 1

0

∫

Brt\Bst

〈(tF )♯ ~T , ωtx/|x|
x
|x|
〉d‖T‖(x) dt

=

∫ 1

0

(tF )♯ (T (Brt \Bst)) (ω
x
|x|
) dt

Thus

M(H) ≤

∫ 1

0

M((tF )♯ (T (Brt \Bst)) dt =

∫ 1

0

t2M(F♯(T (Brt \Bst))) dt

(3.13)

≤ C

∫ 1

0

rε/2t2+ε/2 dt ≤ Crε/2 .

(3.2) follows then from the almost monotonicity formula, see for instance [10, Lemma
17.11].

Step 4. Decomposition. We first introduce the following notation: we call T irre-
ducible in Br(x) if it is not possible to find two (integral) currents with T Br(x) = T 1+T 2

and spt(T 1) ∩ spt(T 2) = {0} (cf. to the notion of indecomposabality as in [6, 4.2.25]: T is
indecomposable if it is impossible to write it as T 1 + T 2 with ∂T1 Br(x) = ∂T2 Br(x) =
0 and M(T1) + M(T2) = ‖T‖(Br(x))). If T is reducible, then clearly Θ(‖T‖, x) =
Θ(‖T 1‖, x)+Θ(‖T 2‖, x). Since each T i would be almost minimizing, Θ(‖T i‖, x) ∈ N \ {0}
and we can only decompose T finitely many times. Next suppose by contradiction that
T is irreducible in x but its tangent cone Tx,0 is not a plane. Then, since Tx,0 is area

minimizing, by [7], there exists J ≥ 2 such that Tx,0 =
∑J

i=1Qi JViK, where Vi ⊂ R
n+2 are

2-dimensional linear subspaces such that Vi ∩ Vj = {0} for every i 6= j and Qi ∈ N satisfy
∑J

i=1Qi = Q. Then consider the currents

T i := T {y ∈ R
m+n : dist(y − x, Vi) ≤ Cr1+γ} for i = 1, 2, . . . , J .

By (3.2) this is a decomposition of T in two non-zero currents whose supports intersect
each other only in {0}, which is a contradiction.

4. Proof of Lemma 3.3

As already mentioned, any 2-dimensional area-minimizing cone S is the sum of (integer
multiples) of finitely many oriented planes, each pair of which intersects only at the origin.
Therefore the support of the cycle R := ∂(S B1) of the statement of Lemma 3.3 consists
of a finite number (say N) of disjoint equatorial circles of ∂B1. By condition (iii), we can
thus assume that Z splits into N cycles, each close (in the sense of (i), (ii) and (iii)) to an
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integer multiple of an equatorial circle of ∂B1. Thus, without loss of generality, from now
on we assume that S is given by Q Jπ0K, where π0 is the (oriented) plane R

2 × {0} ⊂ R
n+2

and Q is a positive integer. Correspondingly, R = Q Jγ0K where γ0 is the oriented equatorial
circle π0 ∩ ∂B1.

Step 1. Reduction to a Lipschitz winding curve. We next introduce the
notation Br(x, π) for the 2-dimensional disk x + Br(0) ∩ π and Cr(x, π) for the cylinder
Br(x, π) + π⊥, omitting x when it is the origin and π when it is the plane π0. Given any
1-dimensional cycle W we consider the infinite 2-dimensional cone T with vertex 0 and
spherical cross section W , namely limR→∞(ι0,R)♯(0××W ) and denote it by (0××W )∞. The
cylindrical excess of any infinite 2-dimensional cone T in C1(τ) is then given by

E(T, τ) :=
1

2

∫

C1(τ)

|~T (x)− τ |2 d‖T‖(x)

whereas the cylindrical excess of Z is

E(Z) := min
τ

E((0××Z)∞, τ) .

It is simple to see that under the assumptions (i), (ii) and (iii), any minimum point τ for
(0××Z)∞ in the expression above must be close to π0.

Let now P be the orthogonal projection onto ∂B1 (which obviously it is defined in
R

n+2 \ {0}). For each π, such projection is invertible when we restrict its domain of
definition to ∂C1(π) and its target to ∂B1 \ π

⊥. We then let P−1
π be its inverse. Note also

that, under the assumptions (i), (ii) and (iii), when τ is close enough to π0, spt(Z) ⊂ B1\τ
⊥.

Therefore, for any such τ we have

(0××Z)∞ C1(τ) = 0×× (P−1
τ )♯Z .

In particular such identity is valid for the π which minimizes E((0××Z)∞, τ). If Z is as
in the statement of the lemma, by a well-known result in geometric measure theory, Z
can be written as the sum of (at most countably many) 1-dimensional cycles Zi, where
each Zi is a simple closed Lipschitz curve and

∑
M(Zi) = M(Z). Observe also that, if ε

is sufficiently small, then (pπ0
)♯(P

−1
π0
)♯Zi (where pπ0

is the orthogonal projection onto π0)
equals ki Jγ0K for some nonnegative integer ki. We thus have

∑
ki = Q and it follows by

standard arguments that each Zi fulfills the assumptions (i), (ii) and (iii) of the Lemma
with ki in place of Q and with ε′ > 0 in place of ε, where the constant ε′ ↓ 0 as ε ↓ 0. Thus,
it suffices to prove the main estimate for each Zi and sum it over i. Observe next that
assumption (ii) in the Lemma excludes the possibility that ki < 0 for some i. Moreover,
the case ki = 0 corresponds to the trivial situation in which the minimizing cone S is 0. In
this case M(Zi) < ε13 and we can use the the isoperimetric inequality to find an H such
that ∂H = Zi and

‖H‖(B1) ≤ C(M(Z))2 ≤ Cε13M(Z) ≤ Cε13
1
2
‖0××Z‖(B1) .

It suffices therefore to consider the case ki > 0.
Summarizing, in addition to (i), (ii) and (iii) we can also assume, w.l.o.g., the following:

(iv) R = Q Jγ0K for some integer Q > 0;
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(v) Z = η♯ J[0,M(Z)]K, where η : [0,M(Z)] → ∂B1 is Lipschitz and η(0) = η(M(Z));
(vi) If E((0××Z)∞, τ) = E(Z), then E(Z, τ) < ε̄ and (pτ )♯(P

−1
τ )♯Z = Q Jγ0K (where

ε̄(ε,Q) ↓ 0 as ε ↓ 0).

For any fixed δ > 0, we next use [11, Proposition 2.7] to find a second curve ζ ′ :
[0, 2Qω2] → ∂C1(τ) with the following properties (recall that 2ω2 is the length of the unit
circle in R

2):

(a1) ζ ′(ϑ) = (cosϑ, sinϑ, f ′(ϑ)) ∈ τ×τ⊥ for some Lipschitz function f ′ : [0, 2Qω2] → τ⊥

with f ′(0) = f ′(2Qω2) and ‖f ′‖∞ + Lip(f ′) ≤ δ;
(a2) If we set Z ′ = ζ ′♯ J[0, 2Qω2]K, then M((P−1

τ )♯Z − Z ′) ≤ E(Z)/C(δ);
(a3) E((0××Z ′)∞, τ) ≤ E((0××Z)∞, τ) = E(Z).

δ will be chosen (sufficiently small) later. Since from (a2) we conclude easily

M(((0××Z)∞ − (0××Z ′)∞) C2(τ
′)) ≤ E(Z)/C(δ) ,

we also infer
M(∂((0××Z − 0××Z ′) C1/2(τ

′))) ≤ E(Z)/C(δ) .

After applying a rotation we can assume that τ ′ = π0. We thus achieve, in addition to
(i)-(vi), the condition

(vii) E((0××Z ′)∞, π0) = E((0××Z ′)∞) and M(∂((0××Z − 0××Z ′) C1/2)) ≤ E(Z)/C(δ).

Next, observe that if τ ′ minimizes E((0××Z ′)∞, τ ′), then

|τ ′ − τ | ≤ C E((0××Z ′)∞, τ) ≤ CE(Z) ≤ C ε

for some geometric constant C. Hence elementary considerations (see for instance the
reparametrization Lemma [5, Lemma B.1]) lead easily to the following conclusions:

(viii) the cycle Z ′′ := ∂((0××Z ′) C1/2) is of the form ζ♯ J[0, 2Qω2]K for some ζ(ϑ) =
1
2
(cosϑ, sinϑ, f(ϑ)) ∈ π0 × π⊥

0 , where |f | + Lip(f) ≤ Cδ (C being a geometric
constant);

(ix) E((0××Z ′′)∞, π0) = E(Z ′′)
(a3)&(vii)

≤ E(Z) < ε̄.

Step 2. Cylindrical epiperimetric inequality and conclusion. Consider the
Fourier expansion of f as

f(ϑ) = α0 +

∞∑

i=0

(

αi cos
(

i
Q
ϑ
)

+ βi sin
(

i
Q
ϑ
))

and let
P (f) := αQ cos+βQ sin .

We first claim the existence of a constant K (depending only upon Q) such that, provided
δ is smaller than some geometric constant, then

‖(f − P (f))‖W 1,2 ≥ K‖f‖W 1,2 . (4.1)

Indeed consider the 2-dimensional plane τ which contains the image of the map ϑ 7→
(cosϑ, sin ϑ, P (f)(ϑ)). It is then straightforward to check that

• C1(τ) ∩ spt((0××Z ′′)∞) ⊂ C2
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• If x = rζ(ϑ) ∈ spt(Z ′′) and r > 0, then

|~T (x)− π0| ≥
1

C
(|Df(ϑ)|+ |f(ϑ)|) (4.2)

|~T (x)− τ | ≤ C (|D(f − P (f))(ϑ)|+ |(f − P (f))(ϑ)|) , (4.3)

where C is just a geometric constant.

Using that Lip(f) ≤ δ, by the area formula we easily conclude that

E((0××Z ′′)∞, π0) ≥
1

C
‖f‖2W 1,2 (4.4)

E((0××Z ′′)∞, τ) ≤ C‖f − P (f)‖2W 1,2 . (4.5)

Since C is a fixed geometric constant, (4.1) follows easily from

E((0××Z ′′), π0) = E(Z ′′) ≤ E((0××Z ′′)∞, τ) .

Next, following [11, Proposition 2.4] we consider the map g :]0, 1
2
]× [0, 2Qω2] → R

n given
by

g(r, ϑ) = α0 +
∞∑

i=0

r
i/Q

(

αi cos
(

i
Q
ϑ
)

+ βi sin
(

i
Q
ϑ
))

and let H ′ = g♯
q
]0, 1

2
]× [0, 2Qω2]

y
. By [11, Proposition 2.4] we have ∂H ′ = Z ′′ and

M(H ′)−
Q

4
ω2 ≤

1

4
(1− 8ε13)E(Z

′′) ≤
1

4
(1− 8ε13)E(Z) ,

for some ε13(Q,K) > 0.
Next, using the isoperimetric inequality we find a 2-dimensional current K such that

∂K = ∂((0××Z) C1/2)− Z ′′ = ∂((0××Z − 0××Z ′) C1/2) and

M(K) ≤ C(M(∂((0××Z) C1/2)− Z ′′))2
(vii)

≤ C(δ)E(Z)2 .

Thus, if we set H := H ′ +K + 0××Z B1 \C1/2, we have ∂H = Z and

M(H) ≤
Q

4
ω2 +

1

4
(1− 8ε13)E(Z) + C(δ)E(Z)2 +M((0××Z) B1 \C1/2) .

Since E(Z) < ε̄, it suffices to choose ε sufficiently small to achieve

M(H) ≤
Q

4
ω2 +

1

4
(1− 4ε13)E(Z) +M((0××Z) B1 \C1/2) .

Next recall that

1

4
E(Z) ≤

1

4
(E((0××Z)∞, π0) =

1

8

∫

C1

|~T − π0|
2d‖0××Z‖

=
1

4
(M((0××Z) C1)−Qω2) = M((0××Z) C1/2)−

Qω2

4
,
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where the first equality in the last line is due to pπ0♯(0××Z) = Q JB1(0, π0)K. We therefore
infer

M(H)−Qω2 ≤ M(0××Z) + ε13Qω2 − 4ε13M((0××Z) C1/2)−Qω2

≤ M(0××Z) + ε13Qω2 − 4ε13M((0××Z) B1/2)−Qω2

= M(0××Z) + ε13Qω2 − ε13M(0××Z)−Qω2

= (1− ε13)(M(0××Z)−Qω2) .
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