Trimming principles play an important role in robust statistics. However, their use for clustering typically requires some preliminary information about the con- tamination rate and the number of groups. We suggest a fresh approach to trim- ming that does not rely on this knowledge and that proves to be particularly suited for solving problems in robust cluster analysis. Our approach replaces the original K-population (robust) estimation problem with K distinct one-population steps, which take advantage of the good breakdown properties of trimmed estimators when the trimming level exceeds the usual bound of 0.5. In this setting we prove that exact affine equivariance is lost on one hand, but on the other hand an arbi- trarily high breakdown point can be achieved by "anchoring" the robust estimator. We also support the use of adaptive trimming schemes, in order to infer the con- tamination rate from the data. A further bonus of our methodology is its ability to provide a reliable choice of the usually unknown number of groups.

Wild adaptive trimming for robust estimation and cluster analysis / Cerioli, Andrea; Farcomeni, Alessio; Riani, Marco. - In: SCANDINAVIAN JOURNAL OF STATISTICS. - ISSN 0303-6898. - STAMPA. - 46:(2019), pp. 235-256. [10.1111/sjos.12349]

Wild adaptive trimming for robust estimation and cluster analysis

Alessio Farcomeni;
2019

Abstract

Trimming principles play an important role in robust statistics. However, their use for clustering typically requires some preliminary information about the con- tamination rate and the number of groups. We suggest a fresh approach to trim- ming that does not rely on this knowledge and that proves to be particularly suited for solving problems in robust cluster analysis. Our approach replaces the original K-population (robust) estimation problem with K distinct one-population steps, which take advantage of the good breakdown properties of trimmed estimators when the trimming level exceeds the usual bound of 0.5. In this setting we prove that exact affine equivariance is lost on one hand, but on the other hand an arbi- trarily high breakdown point can be achieved by "anchoring" the robust estimator. We also support the use of adaptive trimming schemes, in order to infer the con- tamination rate from the data. A further bonus of our methodology is its ability to provide a reliable choice of the usually unknown number of groups.
2019
breakdown point; forward search; outliers
01 Pubblicazione su rivista::01a Articolo in rivista
Wild adaptive trimming for robust estimation and cluster analysis / Cerioli, Andrea; Farcomeni, Alessio; Riani, Marco. - In: SCANDINAVIAN JOURNAL OF STATISTICS. - ISSN 0303-6898. - STAMPA. - 46:(2019), pp. 235-256. [10.1111/sjos.12349]
File allegati a questo prodotto
File Dimensione Formato  
Cerioli_Wild_2017.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 733.85 kB
Formato Adobe PDF
733.85 kB Adobe PDF
Cerioli_Wild-adaptive_2018.pdf

Open Access dal 31/07/2019

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF
Cerioli_Wild-adaptive-trimming_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1112395
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact